We study the so-called -superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when , we have supercaloric functions and the heat equation. We show that the -superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.
@article{ASNSP_2005_5_4_1_59_0, author = {Kinnunen, Juha and Lindqvist, Peter}, title = {Summability of semicontinuous supersolutions to a quasilinear parabolic equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {59--78}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {1}, year = {2005}, mrnumber = {2165403}, zbl = {1107.35070}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2005_5_4_1_59_0/} }
TY - JOUR AU - Kinnunen, Juha AU - Lindqvist, Peter TI - Summability of semicontinuous supersolutions to a quasilinear parabolic equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 59 EP - 78 VL - 4 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2005_5_4_1_59_0/ LA - en ID - ASNSP_2005_5_4_1_59_0 ER -
%0 Journal Article %A Kinnunen, Juha %A Lindqvist, Peter %T Summability of semicontinuous supersolutions to a quasilinear parabolic equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 59-78 %V 4 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2005_5_4_1_59_0/ %G en %F ASNSP_2005_5_4_1_59_0
Kinnunen, Juha; Lindqvist, Peter. Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 59-78. http://archive.numdam.org/item/ASNSP_2005_5_4_1_59_0/
[1] Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81-122. | MR | Zbl
and ,[2] On selfsimilar motions of compressible fluids in a porous medium (in Russian), Prikl. Mat. Mekh. 16 (1952), 679-698. | MR | Zbl
,[3] “Degenerate Parabolic Equations”, Springer-Verlag, Berlin-Heidelberg-New York, 1993. | MR | Zbl
,[4] Current issues on sigular and degenerate evolution equations, in: “Handbook of Differential Equations”, C. Dafermos and E. Feireisl (eds.) in press, Elsevier Publ. | Zbl
, and ,[5] On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), 699-717. | MR | Zbl
, and ,[6] Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) to appear. | MR
and ,[7] On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM. J. Math. Anal. 27 (1996), 661-683. | MR | Zbl
and ,[8] Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591-613. | Numdam | MR | Zbl
and ,[9] “Linear and Quasilinear Equations of Parabolic Type”, AMS, Providence R. I., 1968.
, and ,[10] On the definition and properties of -superharmonic functions, J. Reine Angew. Math. 365 (1986), 67-79. | MR | Zbl
,[11] “Second Order Parabolic Equations”, World Scientific, Singapore, 1996. | MR | Zbl
,[12] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. | MR | Zbl
,[13] Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231-236. | MR | Zbl
,[14] Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. | MR | Zbl
,[15] Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. 33 (1976), 251-298. | MR | Zbl
,[16] Corrigendum, Proc. London Math. Soc. 37 (1977), 32-34. | MR | Zbl
,[17] “Nonlinear Diffusion Equations”, World Scientific, Singapore, 2001. | MR | Zbl
, , and ,