Improved estimates for the Ginzburg-Landau equation : the elliptic case
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 319-355.

We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the GL-energy Eε and the parameter ε. These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.

Classification : 35J60, 35B40, 35Q40, 31B35, 46E35
Bethuel, Fabrice 1 ; Orlandi, Giandomenico 2 ; Smets, Didier 3

1 Laboratoire Jacques-Louis Lions Université de Paris 6 4 place Jussieu BC 187 75252 Paris, France
2 Dipartimento di Informatica Università di Verona strada le Grazie 37134 Verona, Italy
3 Centro di Ricerca Matematica Ennio De Giorgi Scuola Normale Superiore di Pisa Piazza dei Cavalieri 3 56100 Pisa, Italy
@article{ASNSP_2005_5_4_2_319_0,
     author = {Bethuel, Fabrice and Orlandi, Giandomenico and Smets, Didier},
     title = {Improved estimates for the {Ginzburg-Landau} equation : the elliptic case},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {319--355},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {2},
     year = {2005},
     mrnumber = {2163559},
     zbl = {1121.35052},
     language = {en},
     url = {https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/}
}
TY  - JOUR
AU  - Bethuel, Fabrice
AU  - Orlandi, Giandomenico
AU  - Smets, Didier
TI  - Improved estimates for the Ginzburg-Landau equation : the elliptic case
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 319
EP  - 355
VL  - 4
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/
LA  - en
ID  - ASNSP_2005_5_4_2_319_0
ER  - 
%0 Journal Article
%A Bethuel, Fabrice
%A Orlandi, Giandomenico
%A Smets, Didier
%T Improved estimates for the Ginzburg-Landau equation : the elliptic case
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 319-355
%V 4
%N 2
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/
%G en
%F ASNSP_2005_5_4_2_319_0
Bethuel, Fabrice; Orlandi, Giandomenico; Smets, Didier. Improved estimates for the Ginzburg-Landau equation : the elliptic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 319-355. https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/

[1] D. Adams, A Trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105. | MR | Zbl

[2] D. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), 73-94. | MR | Zbl

[3] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., to appear | MR | Zbl

[4] L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 27-49. | Numdam | MR | Zbl

[5] F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, W1,p estimates for solutions to the Ginzburg-Landau equations with boundary data in H1/2, C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 1-8. | MR | Zbl

[6] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123-148. | MR | Zbl

[7] F. Bethuel, H. Brezis and F. Hélein, “Ginzburg-Landau vortices”, Birkhäuser, Boston, 1994. | MR | Zbl

[8] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432-520. Erratum 188 (2002), 548-549. | MR | Zbl

[9] F. Bethuel and G. Orlandi, Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM Control Optim. Calc. Var. 9 (2002), 219-238. | Numdam | MR | Zbl

[10] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. 6 (2004), 17-94. | MR | Zbl

[11] F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Ann. of Math., to appear | MR | Zbl

[12] F. Bethuel, G. Orlandi and D. Smets, Motion of concentration sets in Ginzburg-Landau equations, Ann. Sci. Fac. Toulouse 13 (2004), 3-43. | Numdam | MR | Zbl

[13] F. Bethuel, G. Orlandi and D. Smets, Approximations with vorticity bounds for the Ginzburg-Landau functional, Commun. Contemp. Math. 6 (2004), 803-832. | MR | Zbl

[14] F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, Duke Math. J., to appear. | MR | Zbl

[15] F. Bethuel and T. Rivière, A minimization problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 243-303. | Numdam | MR | Zbl

[16] J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl and related Hodge systems, C.R. Acad. Sci. Paris Sér. I Math. 338 (2004), 539-543. | MR | Zbl

[17] J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space H1 with values in the circle, C.R. Acad. Sci. Paris Série I 331 (2000), 119-124. | MR | Zbl

[18] J. Bourgain, H. Brezis and P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg-Landau equation, Inst. Hantes Études Sci. Publ. Math. 99 (2004), 1-115. | Numdam | MR | Zbl

[19] K. Brakke, “The motion of a surface by its mean curvature”, Princeton University Press, Princeton, 1978. | MR | Zbl

[20] H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Série I Math. 319 (1994), 167-170. | MR | Zbl

[21] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83-103. | MR | Zbl

[22] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Comm. Contemp. Math., to appear. | MR | Zbl

[23] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces J. Math. Pures Appl. 72 (1993), 247-286. | MR | Zbl

[24] M. Comte and P. Mironescu, The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations 4 (1996), 323-340. | MR | Zbl

[25] R. Hervé, and M. Hervé, Etude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427-440. | Numdam | MR | Zbl

[26] L. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161-187. | Numdam | MR | Zbl

[27] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. | MR | Zbl

[28] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151-191. | MR | Zbl

[29] F. H. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999), 237-311. Erratum, J. Eur. Math. Soc. 2 (2000), 87-91. | MR | Zbl

[30] F. H. Lin and T. Rivière, A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), 206-228. | MR | Zbl

[31] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. | MR | Zbl

[32] D. Preiss, Geometry of measures in n: distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537-643. | MR | Zbl

[33] T. Rivière, Line vortices in the U(1) Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996), 77-167. | Numdam | MR | Zbl

[34] R. Schoen and S. T. Yau, “Lectures on harmonic maps”, International Press, Cambridge, MA, 1997. | MR | Zbl

[35] L. Simon, Lectures on Geometric Measure Theory, Proc. of the centre for Math. Anal., Austr. Nat. Univ., 1983. | MR | Zbl

[36] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), 1613-1624. | MR | Zbl

[37] J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C.R. Acad. Sci. Paris, Sér. 1 Math. 338 (2004), 23-26. | MR | Zbl

[38] W. P. Ziemer, “Weakly differentiable functions. Sobolev spaces and functions of bounded variation”, Graduate Texts in Math. 120, Springer Verlag, New York, 1989. | MR | Zbl