In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.
@article{ASNSP_2006_5_5_4_445_0, author = {Kiuchi, Isao and Tanigawa, Yoshio}, title = {Bounds for double zeta-functions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {445--464}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {4}, year = {2006}, mrnumber = {2297719}, zbl = {1170.11317}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2006_5_5_4_445_0/} }
TY - JOUR AU - Kiuchi, Isao AU - Tanigawa, Yoshio TI - Bounds for double zeta-functions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 445 EP - 464 VL - 5 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2006_5_5_4_445_0/ LA - en ID - ASNSP_2006_5_5_4_445_0 ER -
%0 Journal Article %A Kiuchi, Isao %A Tanigawa, Yoshio %T Bounds for double zeta-functions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 445-464 %V 5 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2006_5_5_4_445_0/ %G en %F ASNSP_2006_5_5_4_445_0
Kiuchi, Isao; Tanigawa, Yoshio. Bounds for double zeta-functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 4, pp. 445-464. http://archive.numdam.org/item/ASNSP_2006_5_5_4_445_0/
[1] An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107-116. | MR | Zbl
, and ,[2] Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351. | MR | Zbl
and ,[3] The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353-376. | MR | Zbl
,[4] “Higher Transcendental Functions I”, McGraw-Hill, New-York, 1953. | Zbl
, , and ,[5] “Tables of Integrals, Series and Products”, Academic Press, Inc., 1979. | Zbl
and ,[6] “Van der Corput's methods of exponential sums”, London Math. Society, LNS Vol. 126, Cambridge University Press 1991. | MR | Zbl
and ,[7] New omega results in a weighted divisor problem, J. Number Theory 28 (1988), 240-257. | MR | Zbl
,[8] “Area, Lattice Points and Exponential Sums”, Oxford Science Publications, Clarendon Press, Oxford, 1996. | MR | Zbl
,[9] Integer points, exponential sums and the Riemann zeta function, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory", Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 275-290. | MR | Zbl
,[10] On the estimation of the order of Euler-Zagier multiple zeta-functions, Illinois J. Math. 47 (2003), 1151-1166. | MR | Zbl
and ,[11] “The Riemann Zeta-Function”, John Wiley & Sons, 1985. | MR | Zbl
,[12] “Lattice Points”, Kluwer Academic Publishers, 1988. | MR | Zbl
,[13] On the analytic continuation of various multiple zeta-functions, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 417-440. | MR | Zbl
,[14] A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 39-43. | MR | Zbl
,[15] On Epstein's zeta-function, Proc. London Math. Soc. (2) 36 (1934), 485-500. | Zbl
,[16] “The Theory of the Riemann Zeta-Function” (Revised by D. R. Heath-Brown), Clarendon press Oxford, 1986. | MR | Zbl
,[17] Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275-1283. | MR | Zbl
,