We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic -spaces.
@article{ASNSP_2006_5_5_4_549_0, author = {Rossman, Wayne and Schmitt, Nicholas}, title = {Simultaneous unitarizability of {SL}$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {549--577}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {4}, year = {2006}, zbl = {1150.53021}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2006_5_5_4_549_0/} }
TY - JOUR AU - Rossman, Wayne AU - Schmitt, Nicholas TI - Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 549 EP - 577 VL - 5 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2006_5_5_4_549_0/ LA - en ID - ASNSP_2006_5_5_4_549_0 ER -
%0 Journal Article %A Rossman, Wayne %A Schmitt, Nicholas %T Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 549-577 %V 5 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2006_5_5_4_549_0/ %G en %F ASNSP_2006_5_5_4_549_0
Rossman, Wayne; Schmitt, Nicholas. Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 4, pp. 549-577. http://archive.numdam.org/item/ASNSP_2006_5_5_4_549_0/
[1] On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math 3 (1999), 333-344. | MR | Zbl
,[2] Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46 (1991), 1-45. | MR | Zbl
,[3] Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), 335-364. | MR | Zbl
and ,[4] Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668. | MR | Zbl
, , and ,[5] Construction of constant mean curvature trinoids from holomorphic potentials, preprint, 2000. | Zbl
and ,[6] Unitarization of loop group representations of fundamental groups, preprint, 2005. | MR | Zbl
and[7] Topological components of spaces of representations, Invent. Math. 93 (1988), 557-607. | MR | Zbl
,[8] New surfaces of constant mean curvature, Math. Z. 214 (1993), 527-565. | MR | Zbl
,[9] Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math. 564 (2003), 35-61. | MR | Zbl
, and ,[10] Coplanar constant mean curvature surfaces, math.DG/0509210, 2005. | Zbl
, and ,[11] Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math. 131 (1990), 239-330. | MR | Zbl
,[12] Delaunay ends of constant mean curvature surfaces, preprint, 2006. | MR | Zbl
, and ,[13] Dressing CMC n-noids, Math. Z. 246 (2004), 501-519. | MR | Zbl
, and ,[14] Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1-43. | MR | Zbl
, , and ,[15] The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465-503. | MR | Zbl
, and ,[16] Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 (2001), 169-237. | MR | Zbl
and ,[17] Global solutions of the elliptic 2d periodic Toda lattice, Nonlinearity 7 (1994), 85-108. | MR | Zbl
,[18] “Loop Groups”, Oxford Science Monographs, Oxford Science Publications, 1988. | Zbl
and ,[19] An end to end gluing construction for metrics of constant positive scalar curvature, Indiana Univ. Math. J. 52 (2003), 703-726. | MR | Zbl
,[20] CMCLab, http://www.gang.umass.edu/software.
,[21] Constant mean curvature -noids with symmetries, preprint, 2006.
,[22] Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. London Math. Society, to appear. | Zbl
, , and ,[23] Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois. J. Math. 44 (2000), 72-94. | MR | Zbl
and ,