Simultaneous unitarizability of SL n -valued maps, and constant mean curvature k-noid monodromy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 4, p. 549-577

We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into SL n under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of k-noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic 3-spaces.

Classification:  53C42,  53A35,  49Q10
@article{ASNSP_2006_5_5_4_549_0,
     author = {Rossman, Wayne and Schmitt, Nicholas},
     title = {Simultaneous unitarizability of SL$\_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {4},
     year = {2006},
     pages = {549-577},
     zbl = {1150.53021},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2006_5_5_4_549_0}
}
Rossman, Wayne; Schmitt, Nicholas. Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 4, pp. 549-577. http://www.numdam.org/item/ASNSP_2006_5_5_4_549_0/

[1] I. Biswas, On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math 3 (1999), 333-344. | MR 1796505 | Zbl 0982.14022

[2] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46 (1991), 1-45. | MR 1138951 | Zbl 0780.53009

[3] J. Dorfmeister and G. Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), 335-364. | MR 1961290 | Zbl 1035.53015

[4] J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668. | MR 1664887 | Zbl 0932.58018

[5] J. Dorfmeister and H. Wu, Construction of constant mean curvature trinoids from holomorphic potentials, preprint, 2000. | Zbl 1151.53055

[6] J. Dorfmeister and H. Wu Unitarization of loop group representations of fundamental groups, preprint, 2005. | MR 2354553 | Zbl 1135.22020

[7] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), 557-607. | MR 952283 | Zbl 0655.57019

[8] K. Große-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 (1993), 527-565. | MR 1248112 | Zbl 0806.53005

[9] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math. 564 (2003), 35-61. | MR 2021033 | Zbl 1058.53005

[10] K. Große-Brauckmann, R. Kusner and J. M. Sullivan, Coplanar constant mean curvature surfaces, math.DG/0509210, 2005. | Zbl 1145.53002

[11] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math. 131 (1990), 239-330. | MR 1043269 | Zbl 0699.53007

[12] M. Kilian, W. Rossman and N. Schmitt, Delaunay ends of constant mean curvature surfaces, preprint, 2006. | MR 2388561 | Zbl 1144.53015

[13] M. Kilian, N. Schmitt and I. Sterling, Dressing CMC n-noids, Math. Z. 246 (2004), 501-519. | MR 2073454 | Zbl 1065.53010

[14] N. Korevaar, R. Kusner, W. Meeks Iii and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1-43. | MR 1147718 | Zbl 0757.53032

[15] N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465-503. | MR 1010168 | Zbl 0726.53007

[16] R. Mazzeo and F. Pacard, Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 (2001), 169-237. | MR 1807955 | Zbl 1005.53006

[17] I. Mcintosh, Global solutions of the elliptic 2d periodic Toda lattice, Nonlinearity 7 (1994), 85-108. | MR 1260134 | Zbl 0840.58023

[18] A. Pressley and G. Segal, “Loop Groups”, Oxford Science Monographs, Oxford Science Publications, 1988. | Zbl 0638.22009

[19] J. Ratzkin, An end to end gluing construction for metrics of constant positive scalar curvature, Indiana Univ. Math. J. 52 (2003), 703-726. | MR 1986894 | Zbl 1032.53028

[20] N. Schmitt, CMCLab, http://www.gang.umass.edu/software.

[21] N. Schmitt, Constant mean curvature n-noids with symmetries, preprint, 2006.

[22] N. Schmitt, M. Kilian, S. Kobayashi and W. Rossman, Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. London Math. Society, to appear. | Zbl 1144.53017

[23] M. Umehara and K. Yamada, Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois. J. Math. 44 (2000), 72-94. | MR 1731382 | Zbl 0958.30029