We will consider the following problem
@article{ASNSP_2007_5_6_1_159_0, author = {Abdellaoui, Boumediene and Peral, Ireneo}, title = {The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: {The} optimal power}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {159--183}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {1}, year = {2007}, mrnumber = {2341519}, zbl = {1181.35080}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_1_159_0/} }
TY - JOUR AU - Abdellaoui, Boumediene AU - Peral, Ireneo TI - The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 159 EP - 183 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_1_159_0/ LA - en ID - ASNSP_2007_5_6_1_159_0 ER -
%0 Journal Article %A Abdellaoui, Boumediene %A Peral, Ireneo %T The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 159-183 %V 6 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_1_159_0/ %G en %F ASNSP_2007_5_6_1_159_0
Abdellaoui, Boumediene; Peral, Ireneo. The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 159-183. http://archive.numdam.org/item/ASNSP_2007_5_6_1_159_0/
[1] Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinburgh 132A (2002), 1-24. | MR | Zbl
and ,[2] A note on a critical problem with natural growth in the gradient, J. Eur. Math. Soc. Sect. A 8 (2006), 157-170. | EuDML | MR | Zbl
and ,[3] Nonexistence results for quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities, Commun. Pure Appl. Anal. 2 (2003), 539-566. | MR | Zbl
and ,[4] Some remarks on elliptic problems with critical growth on the gradient, J. Differential Equations 222 (2006), 21-62. | MR | Zbl
, and ,[5] Some improved Caffarelli-Kohn-Nirenberg inequalities, Cal. Var. Partial Differential Equations 23 (2005), 327-345. | MR | Zbl
, and ,[6] Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35. | MR | Zbl
and ,[7] Metastability in a flame front evolution equation, Interfaces Free Bound. 3 (2001) 361-392. | MR | Zbl
, and ,[8] “A Unified Presentation of Two Existence Results for Problems with Natural Growth”, Research Notes in Mathematics, Vol. 296, 1993, 127-137, Longman. | MR | Zbl
, and ,[9] Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203-223. | MR | Zbl
, and ,[10] Existence des solutions non bornées pour certains équations quasi-linéaires, Port. Math., 41 (1982), 507-534. | MR | Zbl
, and ,[11] A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Cont. Dyn. Syst. 16 (2006), 513-523. | MR
, and ,[12] Some simple nonlinear PDE's without solution, Boll. Unione. Mat. Ital. Sez. B 8 (1998), 223-262. | MR | Zbl
and ,[13] On a semilinear equation with inverse-square potential, Selecta Math. 11 (2005), 1-7. | MR | Zbl
, and ,[14] Kato’s inequality when is a measure, C.R. Math. Acad. Sci. Paris 338 (2004), 599-604. | MR | Zbl
and ,[15] First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259-275. | Numdam | MR | Zbl
, and ,[16] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000), 1309-1326. | MR | Zbl
and ,[17] Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87-120. | MR | Zbl
, and ,[18] Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. | Zbl
, and ,[19] Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148. | Zbl
,[20] Invariant criteria for existence of solutions to second-order quasilinear elliptic equations, Comm. Pure Appl. Math. 31 (1978), 619-645. | MR | Zbl
and ,[21] “Generalized Solutions of Hamilton-Jacobi Equations”, Pitman Res. Notes Math., Vol. 62, 1982. | MR | Zbl
,[22] L’injection du cone positif de dans est compacte pour tout , J. Math. Pures Appl. 60 (1981) 309-322. | Zbl
,[23] “Sobolev Spaces”, Springer Verlag, Berlin, 1985. | MR
[24] Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J. Funct. Anal. 203 (2003), 550-568. | MR | Zbl
and ,