In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions and , respectively.
@article{ASNSP_2007_5_6_1_1_0, author = {Juutinen, Petri and Saksman, Eero}, title = {Hamilton-Jacobi flows and characterization of solutions of {Aronsson} equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--13}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {1}, year = {2007}, mrnumber = {2341511}, zbl = {1150.35017}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/} }
TY - JOUR AU - Juutinen, Petri AU - Saksman, Eero TI - Hamilton-Jacobi flows and characterization of solutions of Aronsson equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 1 EP - 13 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/ LA - en ID - ASNSP_2007_5_6_1_1_0 ER -
%0 Journal Article %A Juutinen, Petri %A Saksman, Eero %T Hamilton-Jacobi flows and characterization of solutions of Aronsson equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 1-13 %V 6 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/ %G en %F ASNSP_2007_5_6_1_1_0
Juutinen, Petri; Saksman, Eero. Hamilton-Jacobi flows and characterization of solutions of Aronsson equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 1-13. http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/
[1] Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. | MR | Zbl
,[2] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 439-505. | MR | Zbl
, and ,[3] The infinity Laplacian, Aronsson's equation and their generalizations, preprint. | MR | Zbl
, and ,[4] The Euler equation and absolute minimizers of functionals, Arch. Rational Mech. Anal. 157 (2001), 255-283. | MR | Zbl
, and ,[5] A principle of comparison with distance functions for absolute minimizers, J. Convex Anal., to appear. | MR | Zbl
and ,[6] An efficient derivation of the Aronsson equation, Arch. Rational Mech. Anal. 167 (2003), 271-279. | MR | Zbl
,[7] Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), 123-139. | MR | Zbl
, and ,[8] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR | Zbl
, and ,[9] “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR | Zbl
,[10] Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations 31 (2006), 1027-1046. | MR | Zbl
, and ,[11] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), 51-74. | MR | Zbl
,[12] A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988), 975-978. | MR | Zbl
, and ,[13] Tug-of-war and the infinity Laplacian, preprint (available at http://arxiv.org/archive/math) | MR | Zbl
, , and ,[14] “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, 1993. | MR | Zbl
,[15] The Hopf-Lax formula gives the unique viscosity solution, Differential Integral Equations 15 (2002), 47-52. | MR | Zbl
,[16] -regularity of the Aronsson equation in , Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Numdam | Zbl
and ,[17] “Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization”, Springer-Verlag, New York, 1985. | MR | Zbl
,[18] variational problems and Aronsson equations, Arch. Ration. Mech. Anal. 182 (2006), 153-180. | MR | Zbl