Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 1-13.

In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions rmax yB r (x) u(y) and rmin yB r (x) u(y), respectively.

Classification : 35J60, 49L25, 35F25
@article{ASNSP_2007_5_6_1_1_0,
     author = {Juutinen, Petri and Saksman, Eero},
     title = {Hamilton-Jacobi flows and characterization of solutions of {Aronsson} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {1--13},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {1},
     year = {2007},
     mrnumber = {2341511},
     zbl = {1150.35017},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/}
}
TY  - JOUR
AU  - Juutinen, Petri
AU  - Saksman, Eero
TI  - Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 1
EP  - 13
VL  - 6
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/
LA  - en
ID  - ASNSP_2007_5_6_1_1_0
ER  - 
%0 Journal Article
%A Juutinen, Petri
%A Saksman, Eero
%T Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 1-13
%V 6
%N 1
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/
%G en
%F ASNSP_2007_5_6_1_1_0
Juutinen, Petri; Saksman, Eero. Hamilton-Jacobi flows and characterization of solutions of Aronsson equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 1-13. http://archive.numdam.org/item/ASNSP_2007_5_6_1_1_0/

[1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. | MR | Zbl

[2] G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 439-505. | MR | Zbl

[3] E. N. Barron, L. C. Evans and R. R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, preprint. | MR | Zbl

[4] E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of L functionals, Arch. Rational Mech. Anal. 157 (2001), 255-283. | MR | Zbl

[5] T. Champion and L. De Pascale, A principle of comparison with distance functions for absolute minimizers, J. Convex Anal., to appear. | MR | Zbl

[6] M. G. Crandall, An efficient derivation of the Aronsson equation, Arch. Rational Mech. Anal. 167 (2003), 271-279. | MR | Zbl

[7] M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), 123-139. | MR | Zbl

[8] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR | Zbl

[9] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR | Zbl

[10] R. Gariepy, C. Y. Wang and Y. Yu, Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations 31 (2006), 1027-1046. | MR | Zbl

[11] R. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), 51-74. | MR | Zbl

[12] R. R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988), 975-978. | MR | Zbl

[13] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, preprint (available at http://arxiv.org/archive/math) | MR | Zbl

[14] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, 1993. | MR | Zbl

[15] T. Strömberg, The Hopf-Lax formula gives the unique viscosity solution, Differential Integral Equations 15 (2002), 47-52. | MR | Zbl

[16] C. Wang and Y. Yu, C 1 -regularity of the Aronsson equation in 2 , Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Numdam | Zbl

[17] E. Zeidler, “Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization”, Springer-Verlag, New York, 1985. | MR | Zbl

[18] Y. Yu L variational problems and Aronsson equations, Arch. Ration. Mech. Anal. 182 (2006), 153-180. | MR | Zbl