In 1955, Roth established that if is an irrational number such that there are a positive real number and infinitely many rational numbers with and , then is transcendental. A few years later, Cugiani obtained the same conclusion with replaced by a function that decreases very slowly to zero, provided that the sequence of rational solutions to is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.
@article{ASNSP_2007_5_6_3_477_0, author = {Bugeaud, Yann}, title = {Extensions of the {Cugiani-Mahler} theorem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {477--498}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {3}, year = {2007}, mrnumber = {2370270}, zbl = {1139.11032}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_3_477_0/} }
TY - JOUR AU - Bugeaud, Yann TI - Extensions of the Cugiani-Mahler theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 477 EP - 498 VL - 6 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_3_477_0/ LA - en ID - ASNSP_2007_5_6_3_477_0 ER -
%0 Journal Article %A Bugeaud, Yann %T Extensions of the Cugiani-Mahler theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 477-498 %V 6 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_3_477_0/ %G en %F ASNSP_2007_5_6_3_477_0
Bugeaud, Yann. Extensions of the Cugiani-Mahler theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 477-498. http://archive.numdam.org/item/ASNSP_2007_5_6_3_477_0/
[1] On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1-20. | MR | Zbl
and ,[2] On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547-565. | MR | Zbl
and ,[3] Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11-14. | MR | Zbl
, et ,[4] Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math. 84 (2000), 19-34. | MR
,[5] On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), 97-112. | MR | Zbl
,[6] On the best approximation of zero by values of integral polynomials, Acta Arith. 53 (1989), 17-28 (in Russian). | MR | Zbl
,[7] “Heights in Diophantine Geometry”, New mathematical monographs 4, Cambridge University Press, 2006. | MR | Zbl
and ,[8] Some quantitative results related to Roth's theorem, J. Aust. Math. Soc. 45 (1988), 233-248. | MR | Zbl
and ,[9] On two notions of complexity of algebraic numbers, preprint available at http://arxiv.org/pdf/0709.1560. | MR | Zbl
and ,[10] Sull'approssimazione di numeri algebrici mediante razionali, In: “Collectanea Mathematica”, Pubblicazioni dell'Istituto di Matematica dell'Università di Milano 169, C. Tanburini (ed.), Milano, 1958, pages 5.
,[11] Sulla approssimabilità dei numeri algebrici mediante numeri razionali, Ann. Mat. Pura Appl. 48 (1959), 135-145. | MR | Zbl
,[12] Sull'approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato, Boll. Unione Mat. Ital. 14 (1959), 151-162. | MR | Zbl
,[13] Rational approximations to algebraic numbers, Mathematika 2 (1955), 160-167. | MR | Zbl
and ,[14] The number of algebraic numbers of given degree approximating a given algebraic number. In: “Analytic Number Theory” (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997, 53-83. | MR | Zbl
,[15] A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math. 548 (2002), 21-127. | MR | Zbl
and ,[16] Sur l'approximation des incommensurables et des séries trigonométriques, C. R. Acad. Sci. Paris 139 (1904), 1019-1021. | JFM
,[17] Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161. | MR | Zbl
and ,[18] The classification of rational approximations, Proc. London Math. Soc. 17 (1918), 247-258. | JFM | MR
,[19] On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith. 89 (1999), 97-122. | MR | Zbl
,[20] On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122-124. | MR | Zbl
,[21] “Lectures on Diophantine Approximation, Part 1: -Adic Numbers and Roth’s Theorem”, University of Notre Dame, Ann Arbor, 1961. | MR | Zbl
,[22] Une généralisation d'un théorème de Cugiani-Mahler, Acta Arith. 22 (1972), 57-67. | MR | Zbl
,[23] Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131. | MR | Zbl
,[24] Approssimabilità di irrazionali -adici mediante numeri razionali, Ist. Lombardo Accad. Sci. Lett. Rend. A 98 (1964), 691-708. | MR | Zbl
,[25] Approssimabilità di irrazionali -adici mediante numeri razionali. II, Boll. Unione Mat. Ital. 20 (1965), 232-244. | MR | Zbl
,[26] Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168. | MR | Zbl
,[27] Über simultane Approximation algebraischer Zahlen durch Rationale, Acta Math. 114 (1965) 159-206. | MR | Zbl
,[28] On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50. | MR | Zbl
,[29] Simultaneous approximations to algebraic numbers by rationals, Acta Math. 125 (1970), 189-201. | MR | Zbl
,[30] Norm form equations, Ann. of Math. 96 (1972), 526-551. | MR | Zbl
,[31] “Diophantine Approximation”, Lecture Notes in Mathematics, Vol. 785, Springer, 1980. | MR | Zbl
,[32] The subspace theorem in Diophantine approximation, Compositio Math. 69 (1989), 121-173. | Numdam | MR | Zbl
,[33] “Algebraic numbers and Diophantine Approximation”, Pure and Applied Mathematics, Vol. 26, Marcel Dekker, Inc., New York, 1974. | MR | Zbl
,[34] “Diophantine Approximation on Linear Algebraic Groups, Transcendence Properties of the Exponential Function in Several Variables”, Grundlehren der Mathematischen Wissenschaften, Vol. 326, Springer-Verlag, Berlin, 2000. | MR | Zbl
,