We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form
@article{ASNSP_2007_5_6_4_511_0, author = {Schn\"urer, Oliver C. and Schulze, Felix}, title = {Self-similarly expanding networks to curve shortening flow}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {511--528}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {4}, year = {2007}, mrnumber = {2394409}, zbl = {1139.53031}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2007_5_6_4_511_0/} }
TY - JOUR AU - Schnürer, Oliver C. AU - Schulze, Felix TI - Self-similarly expanding networks to curve shortening flow JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 511 EP - 528 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_4_511_0/ LA - en ID - ASNSP_2007_5_6_4_511_0 ER -
%0 Journal Article %A Schnürer, Oliver C. %A Schulze, Felix %T Self-similarly expanding networks to curve shortening flow %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 511-528 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2007_5_6_4_511_0/ %G en %F ASNSP_2007_5_6_4_511_0
Schnürer, Oliver C.; Schulze, Felix. Self-similarly expanding networks to curve shortening flow. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 511-528. https://www.numdam.org/item/ASNSP_2007_5_6_4_511_0/
[1] “The Motion of a Surface by its Mean Curvature”, Mathematical Notes, Vol. 20, Princeton University Press, Princeton, N.J., 1978. | MR | Zbl
,[2] On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Ration. Mech. Anal. 124 (1993), 355-379. | MR | Zbl
and ,[3] Mean curvature evolution of entire graphs, Ann. of Math. 130 (1989), 453-471. | MR | Zbl
and ,[4] Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), 547-569. | MR | Zbl
and ,[5] The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69-96. | MR | Zbl
and ,[6] The heat equation shrinks embedded plane curves to points, J. Differential Geom. 26 (1987), 285-314. | MR | Zbl
,[7] A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), 127-133. | MR | Zbl
,
[8] “Lectures on Mean Curvature Flow and Related Equations”, 1998, available from http://www.math.ethz.ch/
[9] Motion by curvature of planar networks, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 235-324. | Numdam | MR | Zbl
, and ,[10] Self similar expanding solutions of the planar network flow, arXiv:0704.3113v1 [math.DG]. | MR | Zbl
and ,[11] Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math. 499 (1998), 189-198. | MR | Zbl
,[12] “Mengentheoretische Topologie”, Springer-Verlag, Berlin, 1973, Hochschultext. | MR | Zbl
,