We consider a sequence of multi-bubble solutions of the following fourth order equation
@article{ASNSP_2007_5_6_4_599_0, author = {Lin, Chang-Shou and Wei, Juncheng}, title = {Sharp estimates for bubbling solutions of a fourth order mean field equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {599--630}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {4}, year = {2007}, mrnumber = {2394412}, zbl = {1185.35067}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2007_5_6_4_599_0/} }
TY - JOUR AU - Lin, Chang-Shou AU - Wei, Juncheng TI - Sharp estimates for bubbling solutions of a fourth order mean field equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 599 EP - 630 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2007_5_6_4_599_0/ LA - en ID - ASNSP_2007_5_6_4_599_0 ER -
%0 Journal Article %A Lin, Chang-Shou %A Wei, Juncheng %T Sharp estimates for bubbling solutions of a fourth order mean field equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 599-630 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2007_5_6_4_599_0/ %G en %F ASNSP_2007_5_6_4_599_0
Lin, Chang-Shou; Wei, Juncheng. Sharp estimates for bubbling solutions of a fourth order mean field equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, pp. 599-630. http://archive.numdam.org/item/ASNSP_2007_5_6_4_599_0/
[1] Robert and M. Struwe, Concentration phenomena for Liuville equations in dimension four, J. Eur. Math. Soc. 8 (2006), 171-180. | MR
[2] Uniform estimates and blow-up behavior for solutions of i ntwo dimensions, Comm. Partial Differential Equation 16 (1991), 1223-1254. | MR | Zbl
and ,[3] Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 875-895. | Numdam | MR | Zbl
, , , and ,[4] Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241-1265. | MR | Zbl
, , and ,[5] A inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal. 115 (1993), 344-358. | MR | Zbl
, and ,[6] S-Y A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. 142 (1995), 171-212. | MR | Zbl
[7] C. C Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surface, Comm. Pure Appl. Math. 55 (2002), 728-771. | MR | Zbl
[8] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727. | MR | Zbl
and ,[9] Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc. 134 (2006), 897-908. | MR | Zbl
and ,[10] Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Cal. Var. Partial Differential Equations 13 (2001), 491-517. | MR | Zbl
and ,[11] Compactness and global estimates for a fourth order equation with critical Sobolev growth arising from conformal geometry, Comm. Contemp. Math. 8 (2006), 9-65. | MR | Zbl
, and ,[12] Harnack inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444. | MR | Zbl
,[13] Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270. | MR | Zbl
and ,[14] Locating the peaks of solutions to a Neumann problem via the maximum principle, I: The Neumann problem, Comm. Pure Appl. Math. 56 (2001), 1065-1095. | MR | Zbl
,[15] A classification of solutions of a conformally invariant fourth order equation in , Comment. Math. Helv. 73 (1998), 206-231. | MR | Zbl
,[16] Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math. 56 (2003), 784-809. | MR | Zbl
and ,[17] Topological degree for 4-dimensional mean field equations, submitted.
, and ,[18] Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001), 506-514. | MR | Zbl
and ,[19] Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006), 137-174. | MR | Zbl
,[20] Morse theory and a scalar field equation on compact surfaces, preprint. | MR | Zbl
,[21] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptot. Anal. 3 (1990), 173-188. | MR | Zbl
and ,[22] Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207-228. | MR | Zbl
and ,[23] Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations 21 (1996), 1451-1467. | MR | Zbl
,