Lie description of higher obstructions to deforming submanifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659.

To every morphism χ:LM of differential graded Lie algebras we associate a functors of artin rings Def χ whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of χ. Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.

Classification : 13D10, 14D15
@article{ASNSP_2007_5_6_4_631_0,
     author = {Manetti, Marco},
     title = {Lie description of higher obstructions to deforming submanifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {631--659},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {4},
     year = {2007},
     mrnumber = {2394413},
     zbl = {1174.13021},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2007_5_6_4_631_0/}
}
TY  - JOUR
AU  - Manetti, Marco
TI  - Lie description of higher obstructions to deforming submanifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 631
EP  - 659
VL  - 6
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2007_5_6_4_631_0/
LA  - en
ID  - ASNSP_2007_5_6_4_631_0
ER  - 
%0 Journal Article
%A Manetti, Marco
%T Lie description of higher obstructions to deforming submanifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 631-659
%V 6
%N 4
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2007_5_6_4_631_0/
%G en
%F ASNSP_2007_5_6_4_631_0
Manetti, Marco. Lie description of higher obstructions to deforming submanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659. http://archive.numdam.org/item/ASNSP_2007_5_6_4_631_0/

[1] M. Artin, “Deformations of Singularities”, Tata Institute of Fundamental Research, Bombay, 1976.

[2] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45-88. | MR | Zbl

[3] S. Bloch, Semi-regularity and de Rham cohomology, Invent. Math. 17 (1972) 51-66. | MR | Zbl

[4] R. O. Buchweitz and H. Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135-210. arXiv:math.AG/9912245 | MR | Zbl

[5] P. Burchard and H. Clemens, Normal differential operators and deformation theory, In: “Recent progress in intersection theory” (Bologna, 1997), Birkhäuser Boston, 2000, 33-84. arXiv:math.AG/9811171 | MR | Zbl

[6] H. Clemens, Geometry of formal Kuranishi theory. Adv. Math. 198 (2005), 311-365. | MR | Zbl

[7] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | MR | Zbl

[8] S. K. Donaldson and P. B. Kronheimer, “The Geometry of Four-Manifolds”, Oxford, University Press, 1990. | MR | Zbl

[9] A. Douady, Obstruction primaire à la déformation, Sém. Cartan 13 (1960/61), Exp. 4. | Numdam | Zbl

[10] B. Fantechi and M. Manetti, Obstruction calculus for functors of Artin rings, I. J. Algebra 202 (1998), 541-576. | MR | Zbl

[11] D. Fiorenza and M. Manetti, L structures on mapping cones, Algebra Number Theory 1 (2007), 301-330. | MR | Zbl

[12] K. Fukaya, Deformation theory, homological algebra and mirror symmetry, In: “Geometry and Physics of Branes” (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, 2003, 121-209. | MR

[13] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. | Numdam | MR | Zbl

[14] W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), 337-367. | MR | Zbl

[15] M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. | MR | Zbl

[16] M. Green and R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87-103. | MR | Zbl

[17] R. Hartshorne, “Residues and Duality”, Springer-Verlag, L.N.M., Vol. 20, 1966. | MR | Zbl

[18] D. Iacono, “Differential Graded Lie Algebras and Deformations of Holomorphic Maps”, PhD thesis, 2006, arXiv:math.AG/0701091 | Zbl

[19] N. Jacobson, “Lie Algebras”, Wiley & Sons, 1962. | Zbl

[20] Y. Kawamata, Unobstructed deformations - a remark on a paper of Z. Ran, J. Algebraic Geom. 1 (1992), 183-190. | MR | Zbl

[21] S. Kobayashi, “Differential Geometry of Complex Vector Bundles”, Princeton, Univ. Press, 1987. | MR | Zbl

[22] K. Kodaira and D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | MR | Zbl

[23] J. Kollár, “Rational curves on algebraic varieties”, Springer-Verlag, Ergebnisse Vol. 32, 1996. | Zbl

[24] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216. arXiv:q-alg/9709040 | MR | Zbl

[25] M. Manetti, Deformation theory via differential graded Lie algebras, In: “Seminari di Geometria Algebrica 1998-1999”, Scuola Normale Superiore, 1999. arXiv:math.AG/0507284 | MR

[26] M. Manetti, Extended deformation functors, Int. Math. Res. Not. 14 (2002), 719-756. arXiv:math.AG/9910071 | MR | Zbl

[27] M. Manetti, Cohomological constraint to deformations of compact Kähler manifolds, Adv. Math. 186 (2004), 125-142. | MR | Zbl

[28] M. Manetti, Lectures on deformations on complex manifolds, Rend. Mat. Appl. 24 (2004), 1-183. arXiv:math.AG/0507286 | MR | Zbl

[29] V. P. Palamodov, Deformations of complex spaces, Uspekhi Mat. Nauk. 31:3 (1976), 129-194. Transl. Russian Math. Surveys 31:3 (1976), 129-197. | MR | Zbl

[30] Z. Ran, Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191-198. | MR | Zbl

[31] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | MR | Zbl

[32] M. Schlessinger and J. Stasheff, Deformation Theory and Rational Homotopy Type, preprint, 1979.

[33] F. Severi, Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl. 23 (1944), 149-181. | MR | Zbl

[34] D. Tanré, “Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan”, Springer-Verlag, Lecture Notes in Mathematics Vol. 1025, 1983. | MR | Zbl

[35] C. Voisin, Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: “Complex Projective Geometry” (Trieste, 1989/Bergen, 1989), London Math. Soc., Lecture Note Ser. Vol. 179, 1992, 294-303. | MR | Zbl