Lie description of higher obstructions to deforming submanifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659.

To every morphism χ:LM of differential graded Lie algebras we associate a functors of artin rings Defχ whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of χ. Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.

Classification : 13D10, 14D15
@article{ASNSP_2007_5_6_4_631_0,
     author = {Manetti, Marco},
     title = {Lie description of higher obstructions to deforming submanifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {631--659},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {4},
     year = {2007},
     mrnumber = {2394413},
     zbl = {1174.13021},
     language = {en},
     url = {https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/}
}
TY  - JOUR
AU  - Manetti, Marco
TI  - Lie description of higher obstructions to deforming submanifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 631
EP  - 659
VL  - 6
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/
LA  - en
ID  - ASNSP_2007_5_6_4_631_0
ER  - 
%0 Journal Article
%A Manetti, Marco
%T Lie description of higher obstructions to deforming submanifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 631-659
%V 6
%N 4
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/
%G en
%F ASNSP_2007_5_6_4_631_0
Manetti, Marco. Lie description of higher obstructions to deforming submanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659. https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/

[1] M. Artin, “Deformations of Singularities”, Tata Institute of Fundamental Research, Bombay, 1976.

[2] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45-88. | MR | Zbl

[3] S. Bloch, Semi-regularity and de Rham cohomology, Invent. Math. 17 (1972) 51-66. | MR | Zbl

[4] R. O. Buchweitz and H. Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135-210. arXiv:math.AG/9912245 | MR | Zbl

[5] P. Burchard and H. Clemens, Normal differential operators and deformation theory, In: “Recent progress in intersection theory” (Bologna, 1997), Birkhäuser Boston, 2000, 33-84. arXiv:math.AG/9811171 | MR | Zbl

[6] H. Clemens, Geometry of formal Kuranishi theory. Adv. Math. 198 (2005), 311-365. | MR | Zbl

[7] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | MR | Zbl

[8] S. K. Donaldson and P. B. Kronheimer, “The Geometry of Four-Manifolds”, Oxford, University Press, 1990. | MR | Zbl

[9] A. Douady, Obstruction primaire à la déformation, Sém. Cartan 13 (1960/61), Exp. 4. | Numdam | Zbl

[10] B. Fantechi and M. Manetti, Obstruction calculus for functors of Artin rings, I. J. Algebra 202 (1998), 541-576. | MR | Zbl

[11] D. Fiorenza and M. Manetti, L structures on mapping cones, Algebra Number Theory 1 (2007), 301-330. | MR | Zbl

[12] K. Fukaya, Deformation theory, homological algebra and mirror symmetry, In: “Geometry and Physics of Branes” (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, 2003, 121-209. | MR

[13] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. | Numdam | MR | Zbl

[14] W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), 337-367. | MR | Zbl

[15] M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. | MR | Zbl

[16] M. Green and R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87-103. | MR | Zbl

[17] R. Hartshorne, “Residues and Duality”, Springer-Verlag, L.N.M., Vol. 20, 1966. | MR | Zbl

[18] D. Iacono, “Differential Graded Lie Algebras and Deformations of Holomorphic Maps”, PhD thesis, 2006, arXiv:math.AG/0701091 | Zbl

[19] N. Jacobson, “Lie Algebras”, Wiley & Sons, 1962. | Zbl

[20] Y. Kawamata, Unobstructed deformations - a remark on a paper of Z. Ran, J. Algebraic Geom. 1 (1992), 183-190. | MR | Zbl

[21] S. Kobayashi, “Differential Geometry of Complex Vector Bundles”, Princeton, Univ. Press, 1987. | MR | Zbl

[22] K. Kodaira and D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | MR | Zbl

[23] J. Kollár, “Rational curves on algebraic varieties”, Springer-Verlag, Ergebnisse Vol. 32, 1996. | Zbl

[24] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216. arXiv:q-alg/9709040 | MR | Zbl

[25] M. Manetti, Deformation theory via differential graded Lie algebras, In: “Seminari di Geometria Algebrica 1998-1999”, Scuola Normale Superiore, 1999. arXiv:math.AG/0507284 | MR

[26] M. Manetti, Extended deformation functors, Int. Math. Res. Not. 14 (2002), 719-756. arXiv:math.AG/9910071 | MR | Zbl

[27] M. Manetti, Cohomological constraint to deformations of compact Kähler manifolds, Adv. Math. 186 (2004), 125-142. | MR | Zbl

[28] M. Manetti, Lectures on deformations on complex manifolds, Rend. Mat. Appl. 24 (2004), 1-183. arXiv:math.AG/0507286 | MR | Zbl

[29] V. P. Palamodov, Deformations of complex spaces, Uspekhi Mat. Nauk. 31:3 (1976), 129-194. Transl. Russian Math. Surveys 31:3 (1976), 129-197. | MR | Zbl

[30] Z. Ran, Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191-198. | MR | Zbl

[31] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | MR | Zbl

[32] M. Schlessinger and J. Stasheff, Deformation Theory and Rational Homotopy Type, preprint, 1979.

[33] F. Severi, Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl. 23 (1944), 149-181. | MR | Zbl

[34] D. Tanré, “Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan”, Springer-Verlag, Lecture Notes in Mathematics Vol. 1025, 1983. | MR | Zbl

[35] C. Voisin, Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: “Complex Projective Geometry” (Trieste, 1989/Bergen, 1989), London Math. Soc., Lecture Note Ser. Vol. 179, 1992, 294-303. | MR | Zbl