We introduce and study the notion of Taylorian points of algebraic curves in , which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.
@article{ASNSP_2008_5_7_3_545_0, author = {Bos, Len and Calvi, Jean-Paul}, title = {Taylorian points of an algebraic curve and bivariate {Hermite} interpolation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {545--577}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {3}, year = {2008}, mrnumber = {2466439}, zbl = {1177.41001}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/} }
TY - JOUR AU - Bos, Len AU - Calvi, Jean-Paul TI - Taylorian points of an algebraic curve and bivariate Hermite interpolation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 545 EP - 577 VL - 7 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/ LA - en ID - ASNSP_2008_5_7_3_545_0 ER -
%0 Journal Article %A Bos, Len %A Calvi, Jean-Paul %T Taylorian points of an algebraic curve and bivariate Hermite interpolation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 545-577 %V 7 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/ %G en %F ASNSP_2008_5_7_3_545_0
Bos, Len; Calvi, Jean-Paul. Taylorian points of an algebraic curve and bivariate Hermite interpolation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 3, pp. 545-577. http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/
[1] B. Bojanov and Y. Xu., On polynomial interpolation of two variables, J. Approx. Theory 120 (2003), 267-282. | MR | Zbl
[2] “Spline Functions and Multivariate Interpolations”, Mathematics and its Applications, Vol. 248, Academic Publishers Group, Dordrecht, 1993. | MR | Zbl
, and ,[3] On certain configurations of points in which are unisolvent for polynomial interpolation, J. Approx. Theory 64 (1991), 271-280. | MR | Zbl
,[4] Multipoint taylor interpolation, Calcolo 51 (2008), 35-51. | MR | Zbl
and ,[5] The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx. 10 (2004), 441-454. | MR | Zbl
and ,[6] “Ideals, Varieties, and Algorithms”, Undergraduate Texts in Mathematics, Springer, New York, third edition, 2007. | MR | Zbl
, and ,[7] On multivariate polynomial interpolation, Constr. Approx. 6 (1990), 287-302. | MR | Zbl
and ,[8] The least solution for the polynomial interpolation problem, Math. Z. 210 (1992), 347-378. | MR | Zbl
and ,[9] Complex mean-value interpolation and approximation of holomorphic functions, J. Approx. Theory 91 (1997), 244-278. | MR | Zbl
,[10] Polynomial interpolation in several variables, Adv. Comput. Math. 12 (2000), 377-410. Multivariate polynomial interpolation. | MR | Zbl
and ,[11] On the poisedness of Bojanov-Xu interpolation, J. Approx. Theory 135 (2005), 176-202. | MR | Zbl
and ,[12] On the poisedness of Bojanov-Xu interpolation, II, East J. Approx. 11 (2005), 187-220. | MR | Zbl
and ,[13] “Complex Algebraic Curves”, London Mathematical Society Student Texts, Vol. 23, Cambridge University Press, Cambridge, 1992. | MR | Zbl
,[14] “Multivariate Birkhoff Interpolation”, Lecture Notes in Mathematics, Vol. 1516. ix, Springer-Verlag, 1992. | MR | Zbl
,[15] Multivariate Hermite interpolation by algebraic polynomials: A survey, J. Comput. Appl. Math. 122 (2000), 167-201. | MR | Zbl
,[16] Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4 (1993), 103-145. | MR | Zbl
, and ,[17] Hermite interpolation in several variables using ideal-theoretic methods, In: “Constructive Theory of Functions of Several Variables”, Proc. Conf., Math. Res. Inst., Oberwolfach, 1976, Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, 155-163. | MR | Zbl
,