In this paper, we study triples and of distinct positive integers such that and are all three members of the same binary recurrence sequence.
@article{ASNSP_2008_5_7_4_579_0, author = {Fuchs, Clemens and Luca, Florian and Szalay, Laszlo}, title = {Diophantine triples with values in binary recurrences}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {579--608}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483637}, zbl = {1193.11032}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_4_579_0/} }
TY - JOUR AU - Fuchs, Clemens AU - Luca, Florian AU - Szalay, Laszlo TI - Diophantine triples with values in binary recurrences JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 579 EP - 608 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_4_579_0/ LA - en ID - ASNSP_2008_5_7_4_579_0 ER -
%0 Journal Article %A Fuchs, Clemens %A Luca, Florian %A Szalay, Laszlo %T Diophantine triples with values in binary recurrences %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 579-608 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_4_579_0/ %G en %F ASNSP_2008_5_7_4_579_0
Fuchs, Clemens; Luca, Florian; Szalay, Laszlo. Diophantine triples with values in binary recurrences. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 579-608. http://archive.numdam.org/item/ASNSP_2008_5_7_4_579_0/
[1] An upper bound for the G 243 (2003), 79-84. | MR | Zbl
, and ,[2] On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10. | MR | Zbl
and ,[3] On the period of the continued fraction expansion of square root of , Indag. Math. (N.S.) 16 (2005), 21-35. | MR | Zbl
and ,[4] Diophantine equations with power sums and Universal Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317-332. | MR | Zbl
and ,[5] A lower bound for the height of a rational function at S-unit points, Monatsh. Math. 144 (2005), 203-224. | MR | Zbl
and ,[6] S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), 76-92. | MR | Zbl
and ,[7] There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214. | MR | Zbl
,[8] Diophantine -tuples, webpage available at http://web.math.hr/duje/ dtuples.html.
,[9] An upper bound for the G.C.D. of two linear recurring sequences, Math. Slovaca 53 (2003), 21-42. | MR | Zbl
,[10] Diophantine problems with linear recurrences via the Subspace Theorem, Integers 5 (2005), #A08. | MR | Zbl
,[11] Polynomial-exponential equations involving multirecurrences, Studia Sci. Math. Hungar., to appear. | MR | Zbl
,[12] Polynomial-exponential equations involving several linear recurrences, Publ. Math. Debrecen 65 (2004), 149-172. | MR | Zbl
and ,[13] On the equation , Acta Arith. 9 (1964), 209-219. | MR | Zbl
,[14] On shifted products which are powers, Glas. Mat. Ser. III 40 (2005), 13-20. | MR | Zbl
,[15] On the greatest common divisor of and with and near -units, Monatsh. Math. 146 (2005), 239-256. | MR | Zbl
,[16] Diophantine equations with products of consecutive terms in Lucas sequences, II, Acta Arith., to appear. | MR | Zbl
and ,[17] Fibonacci Diophantine triples, Glas. Mat. Ser. III 43 (2008), 252-264. | MR | Zbl
and ,[18] Linear equations in members of recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 219-246. | Numdam | MR | Zbl
and ,[19] Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000”, F. Amoroso, U. Zannier (eds.), Springer-Verlag, LN 1819, 2003, 171-247. | MR | Zbl
,[20] “Exponential Diophantine Equations”, Cambridge Univ. Press, Cambridge, 1986. | MR | Zbl
and ,[21] Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups, Monats. Math. 145 (2005), 333-350. | MR | Zbl
,[22] -adic logarithmic forms and group varieties, II, Acta Arith. 89 (1999), 337-378. | MR | Zbl
,[23] “Some applications of Diophantine Approximation to Diophantine Equations (with special emphasis on the Schmidt Subspace Theorem)”, Forum, Udine, 2003.
,[24] Diophantine equations with linear recurrences. An overview of some recent progress, J. Théor. Nombres Bordeaux 17 (2005), 423-435. | Numdam | MR | Zbl
,