In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.
@article{ASNSP_2008_5_7_4_673_0, author = {Kuusi, Tuomo}, title = {Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {673--716}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483640}, zbl = {1178.35100}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_4_673_0/} }
TY - JOUR AU - Kuusi, Tuomo TI - Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 673 EP - 716 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_4_673_0/ LA - en ID - ASNSP_2008_5_7_4_673_0 ER -
%0 Journal Article %A Kuusi, Tuomo %T Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 673-716 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_4_673_0/ %G en %F ASNSP_2008_5_7_4_673_0
Kuusi, Tuomo. Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 4, pp. 673-716. http://archive.numdam.org/item/ASNSP_2008_5_7_4_673_0/
[1] Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2) (2007), 285-320. | MR | Zbl
and ,[2] The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1) (1983), 351-366. | MR | Zbl
and ,[3] Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal. 25 (1967), 81-122. | MR | Zbl
and ,[4] Cauchy problem for nonlinear parabolic equations, Hokkaido Math. J. 27 (1) (1998), 51-75. | MR | Zbl
and ,[5] Non-Negative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (5) (1984), 409-437. | MR | Zbl
and ,[6] “Degenerate Diffusions", EMS Tracts in Mathematics, Vol. 1, European Mathematical Society (EMS), Zürich, 2007, Initial value problems and local regularity theory. | MR | Zbl
and ,[7] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 3 (3) (1957), 25-43. | MR | Zbl
,[8] “Degenerate Parabolic Equations", Universitext, Springer-Verlag, New York, 1993. | MR | Zbl
,[9] Intrinsic Harnack estimates for non-negative local solutions of degenerate parabolic equations, Acta Math. 200 (2008), 181-209. | MR | Zbl
, and ,[10] Subpotential lower bounds for nonnegative solutions to certain quasi-linear degenerate parabolic equations, Duke Math. J. 143 (2008), 1-15. | MR | Zbl
, and ,[11] On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1) (1989), 187-224. | MR | Zbl
and ,[12] Current issues on singular and degenerate evolution equations, In: “Evolutionary Equations", Vol. I, Handb. Differ. Equ., 169-286, North-Holland, Amsterdam, 2004. | MR | Zbl
, and ,[13] Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308, MR MR778976 (86g:49007). | Numdam | MR | Zbl
and ,[14] A Harnack inequality for a degenerate parabolic equation, J. Evol. Equ. 6 (2) (2006), 247-267. | MR | Zbl
and ,[15] “Introduction to Regularity Theory for Nonlinear Elliptic Systems", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. | MR | Zbl
,[16] “Lectures on Analysis on Metric Spaces", Universitext, Springer-Verlag, New York, 2001. | MR | Zbl
,[17] “Nonlinear Potential Theory of Degenerate Elliptic Equations", Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications. | MR | Zbl
, and ,[18] The Harnack inequality for generalized solutions of second order quasilinear parabolic equations, Trudy Mat. Inst. Steklov. 102 (1967), 51-84. | MR | Zbl
,[19] Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (3) (2001), 401-423. | MR | Zbl
and ,[20] A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR Izv. 16 (1) (1981), 151-164. | MR | Zbl
and ,[21] On a Harnack inequality for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 3 (1967/1968), 211-241. | MR | Zbl
,[22] “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires", Dunod, 1969. | Zbl
,[23] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | MR | Zbl
,[24] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. | MR | Zbl
,[25] Correction to A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 20 (1967), 231-236. | MR | Zbl
,[26] On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727-740. | MR | Zbl
,[27] Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. | MR | Zbl
,[28] “The Method of Intrinsic Scaling. a Systematic Approach to Regularity for Degenerate and Singular PDEs”, Lecture Notes in Mathematics, Vol. 1930, Springer, 2008. | MR | Zbl
,[29] “The Porous Medium Equation Mathematical Theory", Oxford Mathematical Monographs, Clarendon Press, 2006. | MR | Zbl
,[30] “Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type", Vol. 33 of Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2006. | MR | Zbl
,