Algebraic Morava K-theory spectra over perfect fields
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 369-390.

In the paper [2] we constructed (co)homology theories on the category of smooth schemes which share some of the some of the defining properties of the (co)homology theories induced by the Morava k-theory spactra in classical homotopy theory. Some proofs used the topological realization functor (cf. [8]). The existence of that functor requires the base field k to be embedded in . In this manuscript we investigate up to what extent we can obtain the same results under the sole assumption of perfectness of the base field. The results proved here guarantee the existence of spectra Φ i satisfying the same properties as in [2], provided that the algebra of all the bistable motivic cohomology operations verifies an assumption involving the Milnor operation Q t .

Classification : 14F42, 55P42, 14A15
Borghesi, Simone 1

1 Università degli Studi di Milano Bicocca, Dipartimento di Matematica e Applicazioni, via Cozzi 53, 20125 Milano, Italia
@article{ASNSP_2009_5_8_2_369_0,
     author = {Borghesi, Simone},
     title = {Algebraic {Morava} $K$-theory spectra over perfect fields},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {369--390},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {2},
     year = {2009},
     mrnumber = {2548251},
     zbl = {1179.14019},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2009_5_8_2_369_0/}
}
TY  - JOUR
AU  - Borghesi, Simone
TI  - Algebraic Morava $K$-theory spectra over perfect fields
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 369
EP  - 390
VL  - 8
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2009_5_8_2_369_0/
LA  - en
ID  - ASNSP_2009_5_8_2_369_0
ER  - 
%0 Journal Article
%A Borghesi, Simone
%T Algebraic Morava $K$-theory spectra over perfect fields
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 369-390
%V 8
%N 2
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2009_5_8_2_369_0/
%G en
%F ASNSP_2009_5_8_2_369_0
Borghesi, Simone. Algebraic Morava $K$-theory spectra over perfect fields. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 369-390. http://archive.numdam.org/item/ASNSP_2009_5_8_2_369_0/

[1] S. Borghesi, “Algebraic Morava K-theories and the Higher Degree Formula”, PhD Thesis, Northwestern University, 2000, http://www.math.uiuc.edu/K-theory/0412/. | MR

[2] S. Borghesi, Algebraic Morava K-theories, Invent. Math. 151 (2003), 381–413. | MR | Zbl

[3] A. A. Elmendorf, I. Kriz, M. A. Mandell and J. P. May, “Rings, Modules, and Algebras in Stable Homotopy Theory”, Mathematical Surveys and Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1997, xii–249. | MR | Zbl

[4] J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–552. | EuDML | MR | Zbl

[5] J. Milnor, The Steenrod Algebra and its Dual, Ann. of Math. (2) 67 (1958), 150–171. | MR | Zbl

[6] J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. | MR | Zbl

[7] J. Milnor and J. Stasheff, ‘Characteristic Classes”, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. | MR | Zbl

[8] F. Morel and V. Voevodsky, 𝔸 1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Étude Sci. 90 (1999), 45–143. | EuDML | Numdam | MR | Zbl

[9] P. Hu, S-modules in the Category of Schemes”, Mem. Amer. Math. Soc., Vol. 161, 2003, no. 767, viii–125. | MR | Zbl

[10] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In: “The arithmetic and geometry of algebraic cycles” (Banff, AB, 1998), 117–189, Nato Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer Acad. Publ., Dordrecht, 2000. | MR | Zbl

[11] R. M. Switzer, “Algebraic Topology-Homotopy and Homology”, Springer-Verlag, New York-Heidelberg, 1975, xii–526. | MR | Zbl

[12] V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne). http://www.math.uiuc.edu/K-theory/0527/ | Zbl

[13] V. Voevodsky, Reduced power operation in motivic cohomology, Publ. Math. Inst. Hautes Étude Sci. 98 (2003), 1–57. | EuDML | Numdam | MR | Zbl

[14] V. Voevodsky, Motivic cohomology with /2 coefficients, Publ. Math. Inst. Hautes Étude Sci. 98 (2003), 59–104. | EuDML | Numdam | MR | Zbl

[15] V. Voevodsky, On motivic cohomology with /l-coefficients, preprint, http://www.math.uiuc.edu/K-theory/0639/. | MR | Zbl

[16] V. Voevodsky, Motivic Eilenberg-MacLane spaces, http://www.math.uiuc.edu/K-theory/0864/. | Numdam | Zbl