Degenerate elliptic equations with nonlinear boundary conditions and measures data
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 4, pp. 767-803.

In this paper we study the questions of existence and uniqueness of solutions for equations of type -div𝐚(x,Du)+γ(u)μ 1 , posed in an open bounded subset Ω of N , with nonlinear boundary conditions of the form 𝐚(x,Du)·η+β(u)μ 2 . The nonlinear elliptic operator div𝐚(x,Du) is modeled on the p-Laplacian operator Δ p (u)=div(Du p-2 Du), with p>1, γ and β are maximal monotone graphs in 2 such that 0γ(0)β(0) and the data μ 1 and μ 2 are measures.

Classification: 35J60, 35D05
Andreu, Fuensanta 1; Igbida, Noureddine 2; Mazón, José M. 1; Toledo, Julián 1

1 Departamento de Análisis Matemático, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
2 LAMFA, CNRS-UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, 80038 Amiens, France
@article{ASNSP_2009_5_8_4_767_0,
     author = {Andreu, Fuensanta and Igbida, Noureddine and Maz\'on, Jos\'e M. and Toledo, Juli\'an},
     title = {Degenerate elliptic equations with nonlinear boundary conditions and measures data},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {767--803},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {4},
     year = {2009},
     mrnumber = {2647911},
     zbl = {1205.35120},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2009_5_8_4_767_0/}
}
TY  - JOUR
AU  - Andreu, Fuensanta
AU  - Igbida, Noureddine
AU  - Mazón, José M.
AU  - Toledo, Julián
TI  - Degenerate elliptic equations with nonlinear boundary conditions and measures data
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 767
EP  - 803
VL  - 8
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2009_5_8_4_767_0/
LA  - en
ID  - ASNSP_2009_5_8_4_767_0
ER  - 
%0 Journal Article
%A Andreu, Fuensanta
%A Igbida, Noureddine
%A Mazón, José M.
%A Toledo, Julián
%T Degenerate elliptic equations with nonlinear boundary conditions and measures data
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 767-803
%V 8
%N 4
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2009_5_8_4_767_0/
%G en
%F ASNSP_2009_5_8_4_767_0
Andreu, Fuensanta; Igbida, Noureddine; Mazón, José M.; Toledo, Julián. Degenerate elliptic equations with nonlinear boundary conditions and measures data. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 4, pp. 767-803. http://archive.numdam.org/item/ASNSP_2009_5_8_4_767_0/

[1] F. Andreu, J. M. Mazón, S. Segura De León and J. Toledo, Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), 183–213. | MR | Zbl

[2] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, L 1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 61–89. | EuDML | Numdam | MR | Zbl

[3] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound. 8 (2006), 447–479. | MR | Zbl

[4] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, Obstacle problems for degenerate elliptic equations with nonlinear boundary conditions, Math. Models Methods Appl. Sci. 18 (2008), 1869–1893. | MR | Zbl

[5] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206. | EuDML | Numdam | MR | Zbl

[6] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273. | EuDML | Numdam | MR | Zbl

[7] Ph. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, dedicated to Philippe Bénilan, J. Evol. Equ. 3 (2003), 673–770. | MR | Zbl

[8] Ph. Benilan, H. Brezis and M. G. Crandall, A semilinear equation in L 1 (R N ), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 523–555. | EuDML | Numdam | MR | Zbl

[9] Ph. Bénilan, M. G. Crandall and P. Sacks, Some L 1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim. 17 (1986), 203–224. | MR | Zbl

[10] D. Bartolucci, F. Leoni, L. Orsina and A. C. Ponce, Semilinear equations with exponential nonlinearity and measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 799–815. | EuDML | Numdam | MR | Zbl

[11] L. Boccardo and T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149–169. | MR | Zbl

[12] L. Boccardo and T. Gallouet, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), 641–655. | MR | Zbl

[13] L. Boccardo, T. Gallouet and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551. | EuDML | Numdam | MR | Zbl

[14] L. Boccardo and F. Murat, Remarques sur l’homogénéisation de certains problèmes quasi-linéaires. Portugaliae Math. 41 (1982), 535–562. | EuDML | MR | Zbl

[15] H. Brezis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168. | MR | Zbl

[16] H. Brezis, “Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert”, North-Holland, 1973. | MR | Zbl

[17] H. Brezis, “Analyse Fonctionnelle. Théorie et Applications”, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. | MR | Zbl

[18] H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, In: “Mathematical Aspects of Nonlinear Dispersive Equations”, Ann. of Math. Stud., Vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, 55–109. | MR | Zbl

[19] H. Brezis and A. C. Ponce, Reduced measures for obstacle problems, Adv. Differential Equations 10 (2005), 1201–1234. | MR | Zbl

[20] H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L 1 , J. Math. Soc. Japan 25 (1973), 565-590. | MR | Zbl

[21] J. Crank, “Free and Moving Boundary Problems”, North-Holland, Amsterdam, 1977. | Zbl

[22] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741–808. | EuDML | Numdam | MR | Zbl

[23] E. Dibenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooler water, Trans. Amer. Math. Soc. 282 (1984), 183–204. | MR | Zbl

[24] L. Dupaigne, A. C. Ponce and A. Porretta, Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math. 98 (2006), 349–396. | MR | Zbl

[25] G. Duvaux and J. L. Lions, “Inequalities in Mechanics and Physiscs”, Springer-Verlag, 1976. | MR

[26] C. M. Elliot and V. Janosky, A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg Sect. A 88 (1981), 93–107. | MR

[27] A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271–324. | MR | Zbl

[28] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford Mathematical Monographs, Oxford University Press, New York, 1993. | MR | Zbl

[29] J. L. Lions, “Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires”, Dunod-Gauthier-Vilars, Paris, 1968. | MR

[30] M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900. | MR | Zbl

[31] M. Marcus and L. Véron, The precise boundary trace of solutions of a class of supercritical nonlinear equations, C. R. Math. Acad. Sci. Paris 344 (2007), 181–186. | MR | Zbl

[32] G. Stampacchia, Le probléme de Dirichlet pour les équations elliptiques du second order à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189–258. | EuDML | Numdam | MR | Zbl

[33] J. L. Vázquez, On a semilinear equation in 2 involving bounded measures, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 181–202. | MR | Zbl

[34] W.P. Ziemer, “Weakly Differentiable Functions”, GTM 120, Springer-Verlag, 1989. | MR | Zbl