Let be a contact manifold and let be a strictly pseudoconvex structure of hypersurface type on ; starting only from these data, we define and we investigate a Differential Graded Lie Algebra which governs the deformation theory of .
@article{ASNSP_2010_5_9_3_459_0, author = {De Bartolomeis, Paolo and Meylan, Francine}, title = {Intrinsic deformation theory of $CR$ structures}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {459--494}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, mrnumber = {2722651}, zbl = {1206.32015}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/} }
TY - JOUR AU - De Bartolomeis, Paolo AU - Meylan, Francine TI - Intrinsic deformation theory of $CR$ structures JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 459 EP - 494 VL - 9 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/ LA - en ID - ASNSP_2010_5_9_3_459_0 ER -
%0 Journal Article %A De Bartolomeis, Paolo %A Meylan, Francine %T Intrinsic deformation theory of $CR$ structures %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 459-494 %V 9 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/ %G en %F ASNSP_2010_5_9_3_459_0
De Bartolomeis, Paolo; Meylan, Francine. Intrinsic deformation theory of $CR$ structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 459-494. http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/
[1] Integration des equations de Cauchy-Riemann induites formelles, Seminaire Goulaic-Lions-Schwartz 1974-75, Centre Math. Ecole Polytechnique, Paris, 1975. | EuDML | MR | Zbl
,[2] “Symplectic and Holomorphic Theory in Kähler Geometry”, XIII Escola de geometria diferencial, Sao Paulo, 2004.
[3] Symplectic deformations of Kähler manifolds, J. Symplectic Geom. 3 (2005), 341–355. | MR | Zbl
,[4] “Complex Manifolds”, Holt, Rinehart and Winston, Inc., 1971. | MR | Zbl
and ,[5] “Introduction to Symplectic Topology”, Clarendon Press, Oxford, 1995. | MR | Zbl
and ,[6] On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53–68. | EuDML | MR | Zbl
,