Intrinsic deformation theory of CR structures
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 3, pp. 459-494.

Let (V,ξ) be a contact manifold and let J be a strictly pseudoconvex CR structure of hypersurface type on (V,ξ); starting only from these data, we define and we investigate a Differential Graded Lie Algebra which governs the deformation theory of J.

Classification: 32H02, 32H35
De Bartolomeis, Paolo 1; Meylan, Francine 2

1 Institut de Mathématiques, Université de Fribourg, 1700 Perolles, Fribourg, Switzerland
2 Dipartimento di Matematica Applicata “G. Sansone”, Università degli Studi di Firenze, Via S. Marta, 3, 50139 Firenze, Italia
@article{ASNSP_2010_5_9_3_459_0,
     author = {De Bartolomeis, Paolo and Meylan, Francine},
     title = {Intrinsic deformation theory of $CR$ structures},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {459--494},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {3},
     year = {2010},
     mrnumber = {2722651},
     zbl = {1206.32015},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/}
}
TY  - JOUR
AU  - De Bartolomeis, Paolo
AU  - Meylan, Francine
TI  - Intrinsic deformation theory of $CR$ structures
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 459
EP  - 494
VL  - 9
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/
LA  - en
ID  - ASNSP_2010_5_9_3_459_0
ER  - 
%0 Journal Article
%A De Bartolomeis, Paolo
%A Meylan, Francine
%T Intrinsic deformation theory of $CR$ structures
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 459-494
%V 9
%N 3
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/
%G en
%F ASNSP_2010_5_9_3_459_0
De Bartolomeis, Paolo; Meylan, Francine. Intrinsic deformation theory of $CR$ structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 3, pp. 459-494. http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/

[1] L. Boutet De Monvel, Integration des equations de Cauchy-Riemann induites formelles, Seminaire Goulaic-Lions-Schwartz 1974-75, Centre Math. Ecole Polytechnique, Paris, 1975. | EuDML | MR | Zbl

[2] P. De Bartolomeis “Symplectic and Holomorphic Theory in Kähler Geometry”, XIII Escola de geometria diferencial, Sao Paulo, 2004.

[3] P. De Bartolomeis, Symplectic deformations of Kähler manifolds, J. Symplectic Geom. 3 (2005), 341–355. | MR | Zbl

[4] K. Kodaira and J. Morrow, “Complex Manifolds”, Holt, Rinehart and Winston, Inc., 1971. | MR | Zbl

[5] D. Mcduff and D. Salamon, “Introduction to Symplectic Topology”, Clarendon Press, Oxford, 1995. | MR | Zbl

[6] S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53–68. | EuDML | MR | Zbl