Let be a contact manifold and let be a strictly pseudoconvex structure of hypersurface type on ; starting only from these data, we define and we investigate a Differential Graded Lie Algebra which governs the deformation theory of .
@article{ASNSP_2010_5_9_3_459_0, author = {De Bartolomeis, Paolo and Meylan, Francine}, title = {Intrinsic deformation theory of $CR$ structures}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {459--494}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, zbl = {1206.32015}, mrnumber = {2722651}, language = {en}, url = {archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/} }
De Bartolomeis, Paolo; Meylan, Francine. Intrinsic deformation theory of $CR$ structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 459-494. http://archive.numdam.org/item/ASNSP_2010_5_9_3_459_0/
[1] Integration des equations de Cauchy-Riemann induites formelles, Seminaire Goulaic-Lions-Schwartz 1974-75, Centre Math. Ecole Polytechnique, Paris, 1975. | EuDML 111647 | MR 409893 | Zbl 0317.58003
,[2] “Symplectic and Holomorphic Theory in Kähler Geometry”, XIII Escola de geometria diferencial, Sao Paulo, 2004.
[3] Symplectic deformations of Kähler manifolds, J. Symplectic Geom. 3 (2005), 341–355. | MR 2198780 | Zbl 1119.58011
,[4] “Complex Manifolds”, Holt, Rinehart and Winston, Inc., 1971. | MR 302937 | Zbl 0325.32001
and ,[5] “Introduction to Symplectic Topology”, Clarendon Press, Oxford, 1995. | MR 1373431 | Zbl 0844.58029
and ,[6] On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53–68. | EuDML 142507 | MR 463482 | Zbl 0348.32005
,