We derive a Hölder estimate for , where is either of the two solution operators in Henkin’s local homotopy formula for on a strongly pseudoconvex real hypersurface in , is a -form of class on , and is an integer. We also derive a estimate for , when is of class and is a real number. These estimates require that be of class , or , respectively. The explicit bounds for the constants occurring in these estimates also considerably improve previously known such results.
These estimates are then applied to the integrability problem for CR vector bundles to gain improved regularity. They also constitute a major ingredient in a forthcoming work of the authors on the local CR embedding problem.
@article{ASNSP_2011_5_10_1_129_0, author = {Gong, Xianghong and Webster, Sidney M.}, title = {Regularity for the {CR} vector bundle problem {II}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {129--191}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829316}, zbl = {1223.32022}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_1_129_0/} }
TY - JOUR AU - Gong, Xianghong AU - Webster, Sidney M. TI - Regularity for the CR vector bundle problem II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 129 EP - 191 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_1_129_0/ LA - en ID - ASNSP_2011_5_10_1_129_0 ER -
%0 Journal Article %A Gong, Xianghong %A Webster, Sidney M. %T Regularity for the CR vector bundle problem II %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 129-191 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_1_129_0/ %G en %F ASNSP_2011_5_10_1_129_0
Gong, Xianghong; Webster, Sidney M. Regularity for the CR vector bundle problem II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 129-191. http://archive.numdam.org/item/ASNSP_2011_5_10_1_129_0/
[1] J. Bruna and J. M. Burgués, Holomorphic approximation and estimates for the -equation on strictly pseudoconvex nonsmooth domains, Duke Math. J. 55 (1987), 539–596. | MR | Zbl
[2] S.-C. Chen and M.-C. Shaw, “Partial Differential Equations in Several Complex Variables”, AMS/IP Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc., Providence, RI, International Press, Boston, MA, 2001. | MR | Zbl
[3] G. B. Folland and E. M. Stein, Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. | MR | Zbl
[4] K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132–151 | MR | Zbl
[5] X. Gong and S. M. Webster, Regularity for the CR vector bundle problem I, Pure and Appl. Math. Quarterly 6 (2010), 983–998. | MR | Zbl
[6] X. Gong and S. M. Webster, Regularity in the local CR embedding problem, J. Geom. Anal. DOI: 10.1007/s12220 - 010 - 9192 - 6. | MR
[7] G. M. Henkin, The Lewy equation and analysis on pseudoconvex domains, Russian Math. Surveys 32 (1977), 59–130. | MR | Zbl
[8] G. M. Henkin and A. V. Romanov, Exact Hölder estimates of the solutions of the -equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183. | MR | Zbl
[9] L. Hörmander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62 (1976), 1–52. | MR | Zbl
[10] L. Hörmander, “An Introduction to Complex Analysis in Several Variables”, North Holland, Amsterdam, 3rd edition, 1990. | MR | Zbl
[11] N. Kerzman, Hölder and estimates for solutions of in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. | MR | Zbl
[12] I. Lieb and R. M. Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit -Abschätzungen, Math. Ann. 253 (1980), 145–164. | EuDML | MR | Zbl
[13] L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann complex, J. Reine Angew. Math. 442 (1993), 63–90. | EuDML | MR | Zbl
[14] L. Ma and J. Michel, Regularity of local embeddings of strictly pseudoconvex CR structures, J. Reine Angew. Math. 447 (1994), 147–164. | EuDML | MR | Zbl
[15] J. Michel and L. Ma, On the regularity of CR structures for almost CR vector bundles, Math. Z. 218 (1995), 135–142. | EuDML | MR | Zbl
[16] A. Nagel and J.-P. Rosay, Nonexistence of homotopy formula for forms on hypersurfaces in , Duke Math. J. 58 (1989), 823–827. | MR | Zbl
[17] C. Romero, “Potential Theory for the Kohn Laplacian on the Heisenberg Group”, Thesis, University of Minnesota, 1991. | MR
[18] M.-C. Shaw, estimates for local solutions of on strongly pseudo-convex CR manifolds, Math. Ann. 288 (1990), 35–62. | EuDML | MR | Zbl
[19] Y. T. Siu, The problem with uniform bounds on derivatives, Math. Ann. 207 (1974), 163–176. | EuDML | MR | Zbl
[20] S. M. Webster, A new proof of the Newlander-Nirenberg theorem, Math. Z. 201 (1989), 303–316. | EuDML | MR | Zbl
[21] S. M. Webster, On the local solution of the tangential Cauchy-Riemann equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 167–182. | EuDML | Numdam | MR | Zbl
[22] S. M. Webster, On the proof of Kuranishi’s embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 183–207. | EuDML | Numdam | MR | Zbl
[23] S. M. Webster, The integrability problem for CR vector bundles, In: “Several Complex Variables and Complex Geometry”, Part 3 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 3, Amer. Math. Soc., Providence, RI, 1991, 355–368. | MR | Zbl