In this paper, we generalize to all tube domains over homogeneous cones -continuity properties of the Bergman projection.
@article{ASNSP_2011_5_10_2_477_0, author = {Nana, Cyrille and Trojan, Bartosz}, title = {$L^p${-Boundedness} of {Bergman} projections in tube domains over homogeneous cones}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {477--511}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {2}, year = {2011}, mrnumber = {2856156}, zbl = {1232.32001}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_2_477_0/} }
TY - JOUR AU - Nana, Cyrille AU - Trojan, Bartosz TI - $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 477 EP - 511 VL - 10 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_2_477_0/ LA - en ID - ASNSP_2011_5_10_2_477_0 ER -
%0 Journal Article %A Nana, Cyrille %A Trojan, Bartosz %T $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 477-511 %V 10 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_2_477_0/ %G en %F ASNSP_2011_5_10_2_477_0
Nana, Cyrille; Trojan, Bartosz. $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 2, pp. 477-511. http://archive.numdam.org/item/ASNSP_2011_5_10_2_477_0/
[1] D. Békollé and A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of , Colloq. Math. 68 (1995), 81–100. | EuDML | MR | Zbl
[2] D. Békollé, A. Bonami and G. Garrigós, Littlewood-Paley decomposition related to symmetric cones, IMHOTEP J. Afr. Math. Pures Appl. 3 (2000). | MR | Zbl
[3] D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso and F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004). | MR | Zbl
[4] D. Békollé, A. Bonami, G. Garrigós and F. Ricci, Littlewood-Paley decomposition related to symmetric cones and Bergman projections in tube domains, Proc. London Math. Soc. (3) 89 (2004), 317–360. | MR | Zbl
[5] D. Békollé, A. Bonami, M. M. Peloso and F. Ricci, Boundedness of weighted Bergman projections on tube domains over light cones, Math. Z. 237 (2001), 31–59. | MR | Zbl
[6] D. Békollé and C. Nana, -boundedness of Bergman projections in the tube domain over Vinberg’s cone, J. Lie Theory 17 (2007), 115–144. | MR | Zbl
[7] D. Békollé D. and A. Temgoua, Reproducing properties and -estimates for Bergman projections in Siegel domains of type II, Studia Math. 3 (1995), 219–239. | EuDML | MR | Zbl
[8] C. B. Chua, Relating Homogeneous cones and positive definite cones via -algebras, SIAM J. Optim 14, 5400–506. | MR | Zbl
[9] J. Dorfmeister and M. Koecher, Reguläre Kegel, Jahresber. Deutsch. Math.-Verein. 81 (1979), 109–151. | MR | Zbl
[10] D. Debertol, Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains, Publ. Math. 49 (2005), 21–72. | EuDML | MR | Zbl
[11] J. Faraut and A. Korányi, “Analysis on Symmetric Cones”, Clarendon Press, Oxford, 1994. | MR | Zbl
[12] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593–602. | MR | Zbl
[13] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1–83. | MR | Zbl
[14] G. Garrigós and A. Seeger, Plate decompositions for cone multipliers, In: “Harmonic Analysis and its Applications at Sapporo 2005”, Miyachi & Tachizawa Ed. Hokkaido University Report Series, Vol. 103, 13–28. | Zbl
[15] H. Ishi, Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory 11 (2001), 155–171. | EuDML | MR | Zbl
[16] H. Ishi, The gradient maps associated to certain non-homogeneous cones, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 44–46. | MR | Zbl
[17] M. Spivak, “Differential Geometry”, Vol. I, Publish or Perish, Inc., 1970.
[18] A. Temgoua Kagou, “Domaines de Siegel de type II-Noyau de Bergman”, Thèse de 3e Cycle, Université de Yaoundé I, 1993.
[19] B. Trojan, Asymptotic expansions and Hua-harmonic functions on bounded homogeneous domains, Math. Ann. 336 (2006), 73–110. | MR | Zbl
[20] E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov Mat. Obšč. 12 (1963), 359–388. | MR | Zbl
[21] J. Young Ho, Jordan algebras associated to -algebras, Bull. Korean Math. Soc. 32 (1995), 179–189. | MR | Zbl