Regularity of a class of degenerate elliptic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 645-667.

In the present paper we establish the W 1,p type estimates for the weak solutions of a class of degenerate elliptic equations. The optimal estimates are obtained by introducing the intrinsic metric that is associated with the geometry of the operator and then using the compactness method.

Publié le :
Classification : 35J70, 35H20
Song, Qiaozhen 1 ; Lu, Ying 2 ; Shen, Jianzhong 3 ; Wang, Lihe 4

1 College of Science Xi’an Jiaotong University       Shaanxi, 710049, China
2 Business School Jilin University Jilin, 130012, China
3 College of Science Xi’an Jiaotong University Shaanxi, 710049, China
4 Department of Mathematics University of Iowa IA 52246, USA
@article{ASNSP_2011_5_10_3_645_0,
     author = {Song, Qiaozhen and Lu, Ying and Shen, Jianzhong and Wang, Lihe},
     title = {Regularity of a class of degenerate elliptic equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {645--667},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {3},
     year = {2011},
     mrnumber = {2905381},
     zbl = {1250.35115},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2011_5_10_3_645_0/}
}
TY  - JOUR
AU  - Song, Qiaozhen
AU  - Lu, Ying
AU  - Shen, Jianzhong
AU  - Wang, Lihe
TI  - Regularity of a class of degenerate elliptic equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 645
EP  - 667
VL  - 10
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2011_5_10_3_645_0/
LA  - en
ID  - ASNSP_2011_5_10_3_645_0
ER  - 
%0 Journal Article
%A Song, Qiaozhen
%A Lu, Ying
%A Shen, Jianzhong
%A Wang, Lihe
%T Regularity of a class of degenerate elliptic equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 645-667
%V 10
%N 3
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2011_5_10_3_645_0/
%G en
%F ASNSP_2011_5_10_3_645_0
Song, Qiaozhen; Lu, Ying; Shen, Jianzhong; Wang, Lihe. Regularity of a class of degenerate elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 645-667. http://archive.numdam.org/item/ASNSP_2011_5_10_3_645_0/

[1] S. S. Byun and L. Wang, Elliptic equations with BMO coefficents in reifenberg domains, Comm. Pure Appl. Math. 57 (2004), 1283–1310. | MR | Zbl

[2] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147–154. | MR | Zbl

[3] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125–158. | MR | Zbl

[4] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operator with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541. | EuDML | Numdam | MR | Zbl

[5] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 527–568. | EuDML | Numdam | MR | Zbl

[6] N. Garofalo and D. M. Nhieu, Isoperimetric and the Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR | Zbl

[7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. | MR | Zbl

[8] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke. Math. J. 53 (1986), 503–523. | MR | Zbl

[9] J. J. Kohn, Pseudo differential operators and Hypoellipticity, Proc. Symp. Pure Math. Amer. Math. Soc. 23 (1973), 61–69. | MR | Zbl

[10] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for the vector fields, Ark. Mat. 38 (2000), 327–342. | MR | Zbl

[11] A. Loiudice, Sobolev inequalities with remainder terms for sublaplacians and other subelliptic operators, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 119–136. | MR | Zbl

[12] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operator and nilpotent groups, Acta Math. 137 (1977), 247–320. | MR | Zbl

[13] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions", Princeton, 1970. | MR | Zbl

[14] L. Wang, Hölder estimates for subelliptic opertors, J. Funct. Anal. 199 (2003), 228–242. | MR | Zbl

[15] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), 381–396. | MR | Zbl