In this paper we continue the investigation of the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. In particular we extend some previous results about the Cauchy problem and the quasi-stationary limit to the case where the magnetic permeability and the electric permittivity are variable.
@article{ASNSP_2012_5_11_3_503_0, author = {Dumas, Eric and Sueur, Franck}, title = {Cauchy problem and quasi-stationary limit for the {Maxwell-Landau-Lifschitz} and {Maxwell-Bloch} equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {503--543}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {3}, year = {2012}, mrnumber = {3059836}, zbl = {1258.35191}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2012_5_11_3_503_0/} }
TY - JOUR AU - Dumas, Eric AU - Sueur, Franck TI - Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 503 EP - 543 VL - 11 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2012_5_11_3_503_0/ LA - en ID - ASNSP_2012_5_11_3_503_0 ER -
%0 Journal Article %A Dumas, Eric %A Sueur, Franck %T Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 503-543 %V 11 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2012_5_11_3_503_0/ %G en %F ASNSP_2012_5_11_3_503_0
Dumas, Eric; Sueur, Franck. Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 3, pp. 503-543. http://archive.numdam.org/item/ASNSP_2012_5_11_3_503_0/
[1] F. Alouges and K. Beauchard, Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var.15 (2009), 676–711. | EuDML | Numdam | MR | Zbl
[2] F. Alouges and A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal. (11) 18 (1992), 1071–1084. | MR | Zbl
[3] H. Bahouri, J.-Y. Chemin and R. Danchin, “Fourier Analysis and Nonlinear Partial Differential Equations”, Springer. | MR | Zbl
[4] J. Bergh and J. Löfström, “Interpolation Spaces. An introduction”, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin, 1976. | MR | Zbl
[5] B. Bidégaray-Fesquet, A. Bourgeade and D. Reignier, Introducing physical relaxation terms in Bloch equations, J. Comput. Phys. 170 (2001), 603–613. | MR | Zbl
[6] B. Bidégaray-Fesquet, “De Maxwell-Bloch à Schrödinger non Linéaire: une Hiérarchie de Modèles en Optique Quantique”, Collection Mathématiques et Applications, Vol. 49, Springer, 2006. | MR | Zbl
[7] A. Bohm, “Quantum Mechanics”, Texts and monographs in Physics, Springer-Verlag, 1979. | MR | Zbl
[8] R. W. Boyd, “Nonlinear Optics”, Academic Press, 1992. | MR
[9] P. Brenner, On the existence of global smooth solutions of certain semilinear hyperbolic equations, Math. Z. (2) 67 (1979), 99–135. | EuDML | MR | Zbl
[10] W. F. Brown, “Micromagnetics”, Interscience Publisher, John Willey and Sons, New York, 1963.
[11] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. | MR | Zbl
[12] G. Carbou and P. Fabrie, Time average in micromagnetism, J. Differential Equations 147 (1998), 383–409. | MR | Zbl
[13] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in , Commun. Appl. Anal. (1) 5 (2001), 17–30. | MR | Zbl
[14] G. Carbou and P. Fabrie, Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain, Differential Integral Equations 14 (2001), 219–229. | MR | Zbl
[15] J. Chazarain, Opérateurs hyperboliques a caractéristiques de multiplicité constante, Ann. Inst. Fourier (Grenoble) (1) 24 (1974), 173–202. | EuDML | Numdam | MR | Zbl
[16] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, “Processus d’Interaction Entre Photons et Atomes”, Savoirs actuels, Intereditions/Editions du CNRS, 1988.
[17] J. J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. (3-4) 128 (1972), 183–269. | MR | Zbl
[18] E. Dumas, Global existence for Maxwell-Bloch systems, J. Differential Equations (2) 219 (2005), 484–509. | MR | Zbl
[19] L. Gårding, Hyperbolic equations in the twentieth century, In: “Matériaux pour l’Histoire des Mathématiques au XX siècle” (Nice, 1996), Vol. 3 of Sémin. Congr., pages 37–68, Soc. Math. France, Paris, 1998. | MR | Zbl
[20] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. (1) 133 (1995), 50–68. | MR | Zbl
[21] H. Haddar, “Modèles Asymptotiques en Ferromagnétisme: Couches Minces et Homogénéisation”, Thèse INRIA-École Nationale des Ponts et Chaussées, 2000.
[22] L. Hörmander, Fourier integral operators, I, Acta Math. (1-2) 127 (1971), 79–183. | MR | Zbl
[23] F. Jochmann, Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism, SIAM J. Math. Anal. (2) 34 (electronic) (2002), 315–340. | MR | Zbl
[24] J. L. Joly, G. Métivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré (2) 1 (2000), 307–340. | MR | Zbl
[25] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. (5) 120 (1998), 955–980. | MR | Zbl
[26] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. (9) 46 (1993), 1221–1268. | MR | Zbl
[27] H. Kumano-go, A calculus of Fourier integral operators on and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations (1) 1 (1976), 1–44. | MR | Zbl
[28] L. Landau and E. Lifschitz, “Électrodynamique des milieux continus”, Cours de physique théorique, t. 8, Mir, Moscou, 1969. | MR | Zbl
[29] P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627–646. | MR | Zbl
[30] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. (1) 118 (1996), 1–16. | MR | Zbl
[31] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. | MR | Zbl
[32] R. Loudon, “The Quantum Theory of Light”, Clarendon Press, Oxford, 1991. | Zbl
[33] D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473–508. | MR | Zbl
[34] G. Métivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J. (4) 53 (1986), 983–1011. | MR | Zbl
[35] A. C. Newell and J. V. Moloney, “Nonlinear Optics”, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1992. | MR | Zbl
[36] L. Nirenberg and F. Trèves, On local solvability of linear partial differential equations, II, Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459–509. | MR | Zbl
[37] L. Nirenberg and F. Treves, A correction to: On local solvability of linear partial differential equations, II, Sufficient conditions, (Comm. Pure Appl. Math. 23 (1970), 459–509). Comm. Pure Appl. Math. (2) 24 (1971), 279–288. | MR | Zbl
[38] R. Pantell and H. Puthoff, “Fundamentals of Quantum Electronics”, Wiley and Sons Inc., N.Y., 1969.
[39] J. Rauch and M. C. Reed, Discontinuous progressing waves for semilinear systems, Comm. Partial Differential Equations (9) 10 (1985), 1033–1075. | MR | Zbl
[40] L. Saint-Raymond, Un résultat générique d’unicité pour les équations d’évolution, Bull. Soc. Math. France (1) 130 (2002), 87–99. | EuDML | Numdam | MR | Zbl
[41] M. Sargent, M. O. Scully and W. E. Lamb, “Laser Physics”, Addison-Wesley, 1977.
[42] J. Starynkévitch, Local energy estimates for Maxwell-Landau-Lifshitz system and applications, J. Hyperbolic Differ. Equ. (3) 2 (2005), 565–594. | MR | Zbl
[43] J. Starynkévitch, “Problèmes d’asymptotique en temps en ferromagnétisme”, PhD Thesis.
[44] F. Sueur, Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires, Ann. Inst. Fourier (Grenoble) (1) 56 (2006), 183–245. | EuDML | Numdam | MR | Zbl
[45] A. Visintin, On Landau-Lifshitz equations for ferromagnetism, Japan J. Appl. Math. (1) 2 (1985), 69–84. | MR | Zbl
[46] V. I. Judovič, Some bounds for solutions of elliptic equations, Mat. Sb. (N.S.) (101) (suppl.) 59 (1962), 229–244. | MR | Zbl