The aim of this note is to study the convergence in capacity for functions in the class . We study the problem under several restrictions on the Monge-Ampère measures of the functions considered, such as common domination by a fixed measure or control on the variation.
@article{ASNSP_2012_5_11_4_903_0, author = {Dinew, S{\l}awomir and Hiệp, Phạm Ho\`ang}, title = {Convergence in capacity on compact {K\"ahler} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {903--919}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {4}, year = {2012}, zbl = {1268.32008}, mrnumber = {3060705}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2012_5_11_4_903_0/} }
TY - JOUR AU - Dinew, Sławomir AU - Hiệp, Phạm Hoàng TI - Convergence in capacity on compact Kähler manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 903 EP - 919 VL - 11 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2012_5_11_4_903_0/ LA - en ID - ASNSP_2012_5_11_4_903_0 ER -
%0 Journal Article %A Dinew, Sławomir %A Hiệp, Phạm Hoàng %T Convergence in capacity on compact Kähler manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 903-919 %V 11 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2012_5_11_4_903_0/ %G en %F ASNSP_2012_5_11_4_903_0
Dinew, Sławomir; Hiệp, Phạm Hoàng. Convergence in capacity on compact Kähler manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 903-919. http://archive.numdam.org/item/ASNSP_2012_5_11_4_903_0/
[1] S. Benelkourchi, V. Guedj and A. Zeriahi, A priori estimates for weak solutions of complex Monge-Ampère equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), 81–96. | EuDML | Numdam | MR | Zbl
[2] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère operator, Invent. Math. 37 (1976), 1–44. | EuDML | MR | Zbl
[3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40. | MR | Zbl
[4] T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov inequality, Trans. Amer. Math. Soc. 351 (1999), 4753–4767. | MR | Zbl
[5] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187–217. | MR | Zbl
[6] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier Grenoble 54 (2004), 159–179. | EuDML | Numdam | MR | Zbl
[7] U. Cegrell, Convergence in capacity, Technical report, Isaac Newton Institute for Mathematical Sciences, 2001 (arXiv: math/0505218). | Zbl
[8] U. Cegrell and S. Kołodziej, The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures, Michigan Math. J. 41 (1994), 563–569. | MR | Zbl
[9] U. Cegrell and S. Kołodziej, Equation of complex Monge-Ampère type and stability of solutions, Math. Ann. 334 (2006), 713–729. | MR | Zbl
[10] S. Dinew, An inequality for mixed Monge-Ampère measures, Math. Z. 262 (2009), 1–15. | MR | Zbl
[11] S. Dinew, Uniqueness in , J. Funct. Anal. 256 (2009), 2113–2122. | MR | Zbl
[12] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607–639. | MR | Zbl
[13] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442–482. | MR | Zbl
[14] P. H. Hiệp, On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc. 136 (2008), 2007–2018. | MR | Zbl
[15] P. H. Hiệp, Convergence in capacity, Ann. Polon. Math. 93 (2008), 91–99. | EuDML | MR | Zbl
[16] L. Hörmander, “Notions of Convexity”, Birkhäuser, Boston, 1994. | MR | Zbl
[17] N. V. Khue and P. H. Hiệp, A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications, Trans. Amer. Math. Soc. 361 (2009), 5539–5554. | MR | Zbl
[18] S. Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667–686. | MR | Zbl
[19] S. Kołodziej, The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. 124 (2005), 225–238. | MR | Zbl
[20] S. Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Memoirs Amer. Math. Soc. 178/840 (2005), 1–64. | MR | Zbl
[21] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457–467. | MR | Zbl
[22] Y. Xing, Continuity of the complex Monge-Ampère operator on compact Kähler manifolds, Math. Z. 263 (2009), 331–344. | MR | Zbl