Fibrations over S 1 with pseudo-Anosov monodromy
Travaux de Thurston sur les surfaces - Séminaire Orsay, Astérisque, no. 66-67 (1979), pp. 251-266.
@incollection{AST_1979__66-67__251_0,
     author = {Fried, David},
     title = {Fibrations over $S^1$ with {pseudo-Anosov} monodromy},
     booktitle = {Travaux de Thurston sur les surfaces - S\'eminaire Orsay},
     series = {Ast\'erisque},
     pages = {251--266},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {66-67},
     year = {1979},
     zbl = {0446.57023},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1979__66-67__251_0/}
}
TY  - CHAP
AU  - Fried, David
TI  - Fibrations over $S^1$ with pseudo-Anosov monodromy
BT  - Travaux de Thurston sur les surfaces - Séminaire Orsay
AU  - Collectif
T3  - Astérisque
PY  - 1979
SP  - 251
EP  - 266
IS  - 66-67
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1979__66-67__251_0/
LA  - en
ID  - AST_1979__66-67__251_0
ER  - 
%0 Book Section
%A Fried, David
%T Fibrations over $S^1$ with pseudo-Anosov monodromy
%B Travaux de Thurston sur les surfaces - Séminaire Orsay
%A Collectif
%S Astérisque
%D 1979
%P 251-266
%N 66-67
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1979__66-67__251_0/
%G en
%F AST_1979__66-67__251_0
Fried, David. Fibrations over $S^1$ with pseudo-Anosov monodromy, dans Travaux de Thurston sur les surfaces - Séminaire Orsay, Astérisque, no. 66-67 (1979), pp. 251-266. http://archive.numdam.org/item/AST_1979__66-67__251_0/

[1] D. Fried, Cross-sections to flows, Berkeley Ph.D. thesis, 1976. | MR

[2] D. Fried, Geometry of cross-sections to flows, to appear. | DOI | Zbl

[3] D. Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, to appear. | DOI | MR | Zbl

[4] M.-E. Hamstrom, Homotopy groups of the space of homeomorphism on a 2 -manifold, III. J. Math. 10 (1966) p. 563-573. | MR | Zbl

[5] J. Hempel, 3 -manifolds, Princeton. 1976. | MR | Zbl

[6] J. Milnor, Topology from the differentiable viewpoint, U. Virginia 1966. | MR | Zbl

[7] P. Orlik, Seifert manifolds, Springer-Verlag, 1972. | DOI | MR | Zbl

[8] R. Roussarie, Plongements dans les variétés feuilletées, Publ. Math. I.H.E.S. 43 (1973), p. 143-168. | Numdam | Zbl

[9] D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975), p. 319-327. | DOI | MR | Zbl

[10] S. Schwartzman, Asymptotic cycles, Ann. Math. 66 (1957), p. 270-284. | DOI | MR | Zbl

[11] J. Stallings, Group theory and three-dimensional manifolds, Yale 1971. | MR | Zbl

[12] J. Stallings, On fibring certain 3 -manifolds, Topology of 3 -manifolds and related topics, Prentice Hall 1961. | MR

[13] W. Thurston, A norm for the homology of 3 -manifolds, to appear. | MR | Zbl

[14] W. Thurston, Foliations of 3 -manifolds that are circle bundles, Berkeley, Ph.D. thesis, 1972.

[15] D. Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970), p. 153-154. | DOI | MR | Zbl

[16] F. Waldhausen, On irreducible 3 -manifolds which are sufficiently large, Ann. of Math. 87 (1968), p. 56-88. | DOI | MR | Zbl