@incollection{AST_1984__113-114__167_0, author = {Brown, Ronald}, title = {Non-abelian cohomology and the homotopy classification of maps}, booktitle = {Homotopie alg\'ebrique et alg\`ebre locale}, series = {Ast\'erisque}, pages = {167--172}, publisher = {Soci\'et\'e math\'ematique de France}, number = {113-114}, year = {1984}, zbl = {0548.55018}, mrnumber = {749052}, language = {en}, url = {http://archive.numdam.org/item/AST_1984__113-114__167_0/} }
TY - CHAP AU - Brown, Ronald TI - Non-abelian cohomology and the homotopy classification of maps BT - Homotopie algébrique et algèbre locale AU - Collectif T3 - Astérisque PY - 1984 SP - 167 EP - 172 IS - 113-114 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1984__113-114__167_0/ LA - en ID - AST_1984__113-114__167_0 ER -
%0 Book Section %A Brown, Ronald %T Non-abelian cohomology and the homotopy classification of maps %B Homotopie algébrique et algèbre locale %A Collectif %S Astérisque %D 1984 %P 167-172 %N 113-114 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1984__113-114__167_0/ %G en %F AST_1984__113-114__167_0
Brown, Ronald. Non-abelian cohomology and the homotopy classification of maps, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 167-172. http://archive.numdam.org/item/AST_1984__113-114__167_0/
1. Crossed complexes and -complexes, Ph.D. Thesis, University of Wales, (1978). | Zbl
,2. The homotopy classification of maps from a surface to the projective plane', Ba,gor Preprint 82.5, (1982).
, '3. Simplicial -complexes, Esquisses Math. (to appear). | MR | Zbl
, (ed.),4. The algebra of cubes', J. Pure Appl. Alg. 21 (1981), 233-260. | DOI | MR | Zbl
and , '5. Colimit theorems for relative homotopy groups', J. Pure Appl. Alg. 22 (1981), 11-41. | DOI | MR | Zbl
and , '6. Crossed complexes and non-abelian extensions', Proc. Int. Conf. on Category Theory, Gummersbach, 1981 (ed. H. Kamps, D. Pumplum, M. Tholen) Springer L.N.M. (to appear). | MR | Zbl
and , '7. Crossed complexes and chain complexes with operators', (in preparation). | DOI | Zbl
and , '8. Kan complexes and multiple groupoids, Ph.D. Thesis, University of Wales, (1977). | Zbl
,9. Classifying spaces and spectral sequences', Publ. Math. I.H.E.S. 34 (1968), 105-112. | EuDML | MR | Zbl
, '10. Combinatorial homotopy II', Bull. Amer. Math. Soc. 55 (1949) 453-496. | DOI | MR | Zbl
, '