Spaces whose rational homology and de Rham homotopy are both finite dimensional
Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205.
@incollection{AST_1984__113-114__198_0,
     author = {Halperin, Stephen},
     title = {Spaces whose rational homology and de {Rham} homotopy are both finite dimensional},
     booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
     series = {Ast\'erisque},
     pages = {198--205},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113-114},
     year = {1984},
     zbl = {0546.55015},
     mrnumber = {749058},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1984__113-114__198_0/}
}
TY  - CHAP
AU  - Halperin, Stephen
TI  - Spaces whose rational homology and de Rham homotopy are both finite dimensional
BT  - Homotopie algébrique et algèbre locale
AU  - Collectif
T3  - Astérisque
PY  - 1984
SP  - 198
EP  - 205
IS  - 113-114
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1984__113-114__198_0/
LA  - en
ID  - AST_1984__113-114__198_0
ER  - 
%0 Book Section
%A Halperin, Stephen
%T Spaces whose rational homology and de Rham homotopy are both finite dimensional
%B Homotopie algébrique et algèbre locale
%A Collectif
%S Astérisque
%D 1984
%P 198-205
%N 113-114
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1984__113-114__198_0/
%G en
%F AST_1984__113-114__198_0
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205. http://archive.numdam.org/item/AST_1984__113-114__198_0/

[1] J. Friedlander and S. Halperin. Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | DOI | EuDML | MR | Zbl

[2] S. Halperin. Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | DOI | MR | Zbl

[3] S. Halperin. Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | DOI | MR | Zbl

[4] D. Sullivan, Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | DOI | EuDML | Numdam | MR | Zbl