@incollection{AST_1984__119-120__183_0, author = {Katz, Nicholas M.}, title = {Expansion-coefficients as approximate solution of differential equations}, booktitle = {Cohomologie $p$-adique}, series = {Ast\'erisque}, pages = {183--189}, publisher = {Soci\'et\'e math\'ematique de France}, number = {119-120}, year = {1984}, mrnumber = {773093}, zbl = {0561.14010}, language = {en}, url = {http://archive.numdam.org/item/AST_1984__119-120__183_0/} }
TY - CHAP AU - Katz, Nicholas M. TI - Expansion-coefficients as approximate solution of differential equations BT - Cohomologie $p$-adique AU - Collectif T3 - Astérisque PY - 1984 SP - 183 EP - 189 IS - 119-120 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1984__119-120__183_0/ LA - en ID - AST_1984__119-120__183_0 ER -
%0 Book Section %A Katz, Nicholas M. %T Expansion-coefficients as approximate solution of differential equations %B Cohomologie $p$-adique %A Collectif %S Astérisque %D 1984 %P 183-189 %N 119-120 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1984__119-120__183_0/ %G en %F AST_1984__119-120__183_0
Katz, Nicholas M. Expansion-coefficients as approximate solution of differential equations, dans Cohomologie $p$-adique, Astérisque, no. 119-120 (1984), pp. 183-189. http://archive.numdam.org/item/AST_1984__119-120__183_0/
[O] Cohomologie cristalline des schémas de caractéristique . Springer Lecture Notes in Math. 407, Springer-Verlag (1974) . | MR | Zbl
,[1] A deformation theory for the zeta functions of a hypersurface, Proc. Int'l. Cong. Math. (1962). 247-259. | MR | Zbl
,[2] -adic cycles, Pub. Math. I.H.E.S., Paris, 1969, 27-116. | DOI | EuDML | Numdam | MR | Zbl
,[3] Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. 44 (1958), 312-314. | DOI | MR | Zbl
,[4] On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199-213. | DOI | MR | Zbl
and ,[5] The Hasse-Witt matrix of an algebraic curve, A.M.S. Translations (2), 45, 245-264. | Zbl
,