Surfaces of mean curvature one in hyperbolic space
Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 321-347.
@incollection{AST_1987__154-155__321_0,
     author = {Bryant, Robert L.},
     title = {Surfaces of mean curvature one in hyperbolic space},
     booktitle = {Th\'eorie des vari\'et\'es minimales et applications},
     series = {Ast\'erisque},
     pages = {321--347},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {154-155},
     year = {1987},
     mrnumber = {955072},
     zbl = {0635.53047},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1987__154-155__321_0/}
}
TY  - CHAP
AU  - Bryant, Robert L.
TI  - Surfaces of mean curvature one in hyperbolic space
BT  - Théorie des variétés minimales et applications
AU  - Collectif
T3  - Astérisque
PY  - 1987
SP  - 321
EP  - 347
IS  - 154-155
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1987__154-155__321_0/
LA  - en
ID  - AST_1987__154-155__321_0
ER  - 
%0 Book Section
%A Bryant, Robert L.
%T Surfaces of mean curvature one in hyperbolic space
%B Théorie des variétés minimales et applications
%A Collectif
%S Astérisque
%D 1987
%P 321-347
%N 154-155
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1987__154-155__321_0/
%G en
%F AST_1987__154-155__321_0
Bryant, Robert L. Surfaces of mean curvature one in hyperbolic space, in Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 321-347. http://archive.numdam.org/item/AST_1987__154-155__321_0/

[1] M. Cowen and P. A. Griffiths, Holomorphic Curves and Metrics of Negative Curvature, J. Analyse Math. 29 (1976), 93-153. | DOI | MR | Zbl

[2] E. Hille, Analytic Function Theory, vol. II, Ginn & Co., 1962. | MR | Zbl

[3] B. Lawson, Lectures on Minimal Submanifolds, vol. 1, Publish or Perish, Inc., 1976. | MR | Zbl

[4] R. Osserman, A survey of Minimal Surfaces, Van Nostrand, N.Y., 1969, New edition, Dover 1986. | MR | Zbl

[5] M. Spivak, A comprehensive Introduction to differential Geometry, Publish or Perish, Inc., 1976. | MR | Zbl

[6] W. Thurston, The geometry and Topology of 3-manifolds, mimeographed notes, Princeton University.