Appendix. On the Thom-Smale complex
An extension of a Theorem by Cheeger and Müller, Astérisque, no. 205 (1992), p. 219-233
@incollection{AST_1992__205__219_0,
     author = {Laudenbach, Fran\c cois},
     title = {Appendix. On the Thom-Smale complex},
     booktitle = {An extension of a Theorem by Cheeger and M\"uller},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {205},
     year = {1992},
     pages = {219-233},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__205__219_0}
}
Laudenbach, François. Appendix. On the Thom-Smale complex, in An extension of a Theorem by Cheeger and Müller, Astérisque, no. 205 (1992), pp. 219-233. http://www.numdam.org/item/AST_1992__205__219_0/

[B] Bott R., Morse theory indomitable, Publ. Math. IHES 68 (1988), 99-114.

[C] Cerf J., La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. IHES 39 (1970), 7-172.

[F1] Floer A., Morse theory for Lagrangian intersections, J. Diff. Geom. 28 (1988), 513-547.

[F2] Floer A., An instanton invariant for three-manifolds, Comm. Math. Phys. 118 (1988), 215-240.

[M1] Milnor J., Characteristic classes, Annals of Math Studies, Princeton University Press 1974.

[M2] Milnor J., Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.

[Rh] De Rham G., Differentiable manifolds, Springer-Verlag 1984.

[R] Rosenberg H., A generalization of Morse-Smale inequalities, Bull. Amer. Math. Soc. 70 (1964), 422-427.

[S] Smale S., On gradient dynamical systems, Annals of Math. 74 (1961), 199-206.

[ST] Singer I. M., Thorpe J. A., Lecture Notes on Elementary Topology and Geometry, Springer 1967.

[T] Thom R., Sur une partition en cellules associées à une fonction sur une variété, CRAS t. 228 (1949), 973-975.

[W] Witten E., Supersymmetry and Morse theory, J. Diff. Geometry. 17 (1982) 661-692.