@incollection{AST_1994__224__61_0, author = {Schapira, Pierre and Schneiders, Jean-Pierre}, title = {Elliptic pairs {II.} {Euler} class and relative index theorem}, booktitle = {Index theorem for elliptic pairs}, series = {Ast\'erisque}, pages = {61--98}, publisher = {Soci\'et\'e math\'ematique de France}, number = {224}, year = {1994}, mrnumber = {1305643}, zbl = {0856.58039}, language = {en}, url = {http://archive.numdam.org/item/AST_1994__224__61_0/} }
TY - CHAP AU - Schapira, Pierre AU - Schneiders, Jean-Pierre TI - Elliptic pairs II. Euler class and relative index theorem BT - Index theorem for elliptic pairs AU - Collectif T3 - Astérisque PY - 1994 SP - 61 EP - 98 IS - 224 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1994__224__61_0/ LA - en ID - AST_1994__224__61_0 ER -
%0 Book Section %A Schapira, Pierre %A Schneiders, Jean-Pierre %T Elliptic pairs II. Euler class and relative index theorem %B Index theorem for elliptic pairs %A Collectif %S Astérisque %D 1994 %P 61-98 %N 224 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1994__224__61_0/ %G en %F AST_1994__224__61_0
Schapira, Pierre; Schneiders, Jean-Pierre. Elliptic pairs II. Euler class and relative index theorem, dans Index theorem for elliptic pairs, Astérisque, no. 224 (1994), pp. 61-98. http://archive.numdam.org/item/AST_1994__224__61_0/
[1] The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433. | DOI | MR | Zbl
and ,[2] Riemann-Roch and topological -theory for singular varieties, Acta Math. 143 (1979), 155-192. | DOI | MR | Zbl
, , and ,[3] Le théorème de l'indice relatif, Ann. Sci. École Norm. Sup. 23 (1990), 151-192. | DOI | EuDML | Numdam | MR | Zbl
and ,[4] On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 10 (1975), 563-579. | DOI | MR | Zbl
,[5] Systems of microdifferential equations, Progress in Mathematics, no. 34, Birkhäuser, 1983. | MR | Zbl
,[6] Character, character cycle, fixed point theorem and group representation, Adv. Studies in Pure Math. 14 (1988), 369-378. | DOI | MR | Zbl
,[7] Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften, no. 292, Springer, 1990. | DOI | MR | Zbl
and ,[8] Sur la catégorie dérivée des -modules filtrés, Algebraic Geometry (M. Raynaud and T. Shioda, eds.), Lecture Notes in Mathematics, no. 1016, Springer, 1983, pp. 151-237. | MR | Zbl
,[9] Hirzebruch-Riemann-Roch for coherent sheaves, Amer. J. Math. 103 (1981), 253-271. | DOI | MR | Zbl
, , and ,[10] Hyperfunctions and pseudo-differential equations, Hyperfunctions and Pseudo-Differential Equations (H. Komatsu, ed.), Lecture Notes in Mathematics, no. 287, Springer-Verlag, 1973, Proceedings Katata 1971, pp. 265-529. | MR | Zbl
, , and ,[11] Microdifferential systems in the complex domain, Grundlehren der mathematischen Wissenschaften, no. 269, Springer, 1985. | DOI | MR | Zbl
,[12] Sheaf theory for partial differential equations, Proceedings of the International Congress of Mathematicians, Kyoto, Springer, 1990. | MR | Zbl
,[13] Paires elliptiques II. Classes d'Euler et indice, C. R. Acad. Sci. Paris 312 (1991), 81-84. | MR | Zbl
and ,[14] Elliptic pairs I. Relative finiteness and duality, this volume. | Numdam | Zbl
and ,