Stable topological cyclic homology is topological Hochschild homology
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 175-192.
@incollection{AST_1994__226__175_0,
     author = {Hesselholt, Lars},
     title = {Stable topological cyclic homology is topological {Hochschild} homology},
     booktitle = {$K$-theory - Strasbourg, 1992},
     series = {Ast\'erisque},
     pages = {175--192},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     mrnumber = {1317119},
     zbl = {0816.19002},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1994__226__175_0/}
}
TY  - CHAP
AU  - Hesselholt, Lars
TI  - Stable topological cyclic homology is topological Hochschild homology
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
SP  - 175
EP  - 192
IS  - 226
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1994__226__175_0/
LA  - en
ID  - AST_1994__226__175_0
ER  - 
%0 Book Section
%A Hesselholt, Lars
%T Stable topological cyclic homology is topological Hochschild homology
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%P 175-192
%N 226
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1994__226__175_0/
%G en
%F AST_1994__226__175_0
Hesselholt, Lars. Stable topological cyclic homology is topological Hochschild homology, dans $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 175-192. http://archive.numdam.org/item/AST_1994__226__175_0/

[1] M. Bökstedt, Topological Hochschild Homology, to appear in Topology.

[2] M. Bökstedt, W. C. Hsiang, I. Madsen, The Cyclotomic Trace and Algebraic K-theory of Spaces, Invent. Math. (1993). | EuDML | MR | Zbl

[3] M. Bökstedt, I. Madsen, Topological Cyclic Homology of the Integers, these proceedings. | Numdam | Zbl

[4] B. Dundas, R. Mccarthy, Stable K-theory and Topological Hochschild Homology, preprint Brown University. | DOI | MR | Zbl

[5] T. Goodwillie, Notes on the Cyclotomic Trace, MSRI (unpublished).

[6] L. Hesselholt, I. Madsen, Topological Cyclic Homology of Dual Numbers and their Finite Fields, preprint series, Aarhus University (1993).

[7] J. D. S. Jones, Cyclic Homology and Equivariant Homology, Invent. math. 87 (1987), 403-423. | DOI | EuDML | MR | Zbl

[8] C. Kassel, La K-théorie Stable, Bull. Soc. math., France 110 (1982), 381-416. | EuDML | Numdam | MR | Zbl

[9] L. G. Lewis, J. P. May, M. Steinberger, Stable Equivariant Homotopy Theory, LNM 1213. | Zbl

[10] S. Maclane, Categories for the Working Mathematician, GTM 5, Springer-Verlag. | MR | Zbl

[11] I. Madsen, The Cyclotomic Trace in Algebraic K-theory, Proc. ECM, Paris, France (1992). | Zbl

[12] T. Pirashvili, F. Waldhausen, MacLane Homology and Topological Hochschild Homology, J. Pure Appl. Alg 82 (1992), 81-99. | DOI | MR | Zbl

[13] G. Segal, Classifying Spaces and Spectral Sequences, Publ. Math. I.H.E.S. 34 (1968), 105-112. | DOI | EuDML | Numdam | MR | Zbl

[14] G. Segal, Categories and Cohomology Theories, Topology 13 (1974), 293-312. | DOI | MR | Zbl

[15] F. Waldhausen, Algebraic K-theory of Spaces II, Algebraic Topology Aarhus 1978, LNM 763, 356-394. | MR | Zbl