Algebraic K-theory of operator ideals (after Mariusz Wodzicki)
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 193-209.
@incollection{AST_1994__226__193_0,
     author = {Husem\"oller, Dale H.},
     title = {Algebraic $K$-theory of operator ideals (after {Mariusz} {Wodzicki)}},
     booktitle = {$K$-theory - Strasbourg, 1992},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     zbl = {0821.46089},
     mrnumber = {1317120},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1994__226__193_0/}
}
TY  - CHAP
AU  - Husemöller, Dale H.
TI  - Algebraic $K$-theory of operator ideals (after Mariusz Wodzicki)
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
DA  - 1994///
IS  - 226
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1994__226__193_0/
UR  - https://zbmath.org/?q=an%3A0821.46089
UR  - https://www.ams.org/mathscinet-getitem?mr=1317120
LA  - en
ID  - AST_1994__226__193_0
ER  - 
%0 Book Section
%A Husemöller, Dale H.
%T Algebraic $K$-theory of operator ideals (after Mariusz Wodzicki)
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%N 226
%I Société mathématique de France
%G en
%F AST_1994__226__193_0
Husemöller, Dale H. Algebraic $K$-theory of operator ideals (after Mariusz Wodzicki), in $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 193-209. http://archive.numdam.org/item/AST_1994__226__193_0/

[1] Bourbaki, N. Algèbre homologique, Masson, 1980. | MR | Zbl

[2] Calkin, J. W. Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Annals of Mathematics, 42 (1941), pp. 839- 873 | DOI | MR | Zbl

[3] Dixmier J. Remarques sur les applications, Arch. der Math., 3 (1952), pp. 290-297. | DOI | MR | Zbl

[4] Dixmier, J. Formes linéaires sur un anneau d'opérateurs, Bulletin Math. de France, (1953), pp. 9-39. | DOI | EuDML | Numdam | MR | Zbl

[5] Goodwillie, T. Relative algebraic K-theory and cyclic homology, Annals of Math., 124 (1986), pp. 347-402. | DOI | MR | Zbl

[6] Quillen, D. Cyclic Cohomology and Algebra Extensions, K-theory, 3 (1989), pp. 205-246. | DOI | MR | Zbl

[7] Suslin, A. A. and Wodzicki, M., Excision in algebraic K-theory and Karoubi's conjecture. Proc. Natl. Acad. Sci. USA, 87 (1990), pp. 9582-9584. | DOI | MR | Zbl

[8] Suslin, A. A. and Wodzicki, M., Excision in algebraic K-theory, Annals of Math., 136 (1992), pp. 51-122. | DOI | MR | Zbl

[9] Wagoner, J., Delooping Classifiying Spaces in Algebraic K-theory, Topology, 11 (1972), pp. 349-370. | DOI | MR | Zbl

[10] Weibel, C. A., Mayer-Vietoris sequences and mod p K-theory, Springer Lecture Notes in Math. 966 (1982), pp. 390-407. | MR | Zbl

[11] Wodzicki, M., Excision in algebraic K-theory and in rational algebraic K-theory, Annals of Math., 129 (1989), pp. 591-639. | DOI | MR | Zbl