Number fields of given degree and bounded discriminant
Columbia university number theory seminar - New-York, 1992, Astérisque, no. 228 (1995), pp. 189-195.
@incollection{AST_1995__228__189_0,
     author = {Schmidt, Wolfgang M.},
     title = {Number fields of given degree and bounded discriminant},
     booktitle = {Columbia university number theory seminar - New-York, 1992},
     series = {Ast\'erisque},
     pages = {189--195},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {228},
     year = {1995},
     mrnumber = {1330934},
     zbl = {0827.11069},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1995__228__189_0/}
}
TY  - CHAP
AU  - Schmidt, Wolfgang M.
TI  - Number fields of given degree and bounded discriminant
BT  - Columbia university number theory seminar - New-York, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1995
SP  - 189
EP  - 195
IS  - 228
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1995__228__189_0/
LA  - en
ID  - AST_1995__228__189_0
ER  - 
%0 Book Section
%A Schmidt, Wolfgang M.
%T Number fields of given degree and bounded discriminant
%B Columbia university number theory seminar - New-York, 1992
%A Collectif
%S Astérisque
%D 1995
%P 189-195
%N 228
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1995__228__189_0/
%G en
%F AST_1995__228__189_0
Schmidt, Wolfgang M. Number fields of given degree and bounded discriminant, dans Columbia university number theory seminar - New-York, 1992, Astérisque, no. 228 (1995), pp. 189-195. http://archive.numdam.org/item/AST_1995__228__189_0/

[1] A. M. Bailey. On the density of discriminants of quartic fields, J. Reine Angew. Math. 315 (1980), 190-210. | EuDML | MR | Zbl

[2] J. W. S. Cassels. An Introduction to the Geometry of Numbers, Springer Grundlehren 99 (1959). | MR | Zbl

[3] H. Davenport and H. Heilbronn. On the density of discriminants of cubic fields II. Proc. Roy. Soc. London A322 (1971). | DOI | MR | Zbl

[4] D. J. Wright. Distribution of discriminants of abelian extensions, Proc. London Math. Soc., (3) 58 (1989), 17-50. | DOI | MR | Zbl