Large deviations for three dimensional supercritical percolation
Astérisque, no. 267 (2000) , 183 p.
@book{AST_2000__267__R1_0,
     author = {Cerf, Rapha\"el},
     title = {Large deviations for three dimensional supercritical percolation},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {267},
     year = {2000},
     zbl = {0962.60002},
     mrnumber = {1774341},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2000__267__R1_0/}
}
TY  - BOOK
AU  - Cerf, Raphaël
TI  - Large deviations for three dimensional supercritical percolation
T3  - Astérisque
PY  - 2000
DA  - 2000///
IS  - 267
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2000__267__R1_0/
UR  - https://zbmath.org/?q=an%3A0962.60002
UR  - https://www.ams.org/mathscinet-getitem?mr=1774341
LA  - en
ID  - AST_2000__267__R1_0
ER  - 
%0 Book
%A Cerf, Raphaël
%T Large deviations for three dimensional supercritical percolation
%S Astérisque
%D 2000
%N 267
%I Société mathématique de France
%G en
%F AST_2000__267__R1_0
Cerf, Raphaël. Large deviations for three dimensional supercritical percolation. Astérisque, no. 267 (2000), 183 p. http://numdam.org/item/AST_2000__267__R1_0/

1. M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Commun. Math. Phys. 92 no.1 (1983), 19-69. | DOI | Zbl | MR

2. K. S. Alexander, Stability of the Wulff minimum and fluctuations in shape for large finite clusters in two-dimensional percolation, Probab. Theory Related Fields 91 no.3/4 (1992), 507-532. | DOI | Zbl | MR

3. K. S. Alexander, J. T. Chayes and L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation, Commun. Math. Phys. 131 no.1 (1990), 1-50. | DOI | Zbl | MR

4. F. Almgren, Questions and answers about area-minimizing surfaces and geometric measure theory, Differential geometry: partial differential equations on manifolds. R. Greene (ed.) et al., Proc. Symp. Pure Math. 54 (1993), 29-53. | DOI | Zbl | MR

5. G. Alberti, G. Bellettini, M. Cassandro and E. Presutti, Surface tension in Ising systems with Kac potentials, J. Statist. Phys. 82 no.3/4 (1996), 743-796. | DOI | Zbl | MR

6. P. Assouad and T. Quentin De Gromard, Sur la derivation des mesures dans n , Note (1998).

7. G. Bellettini, M. Cassandro and E. Presutti, Constrained minima of nonlocal free energy functionals, J. Statist. Phys. 84 no.5/6 (1996), 1337-1349. | DOI | Zbl | MR

8. G. Bellettini, M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 no.1 (1998), 97-131. | Numdam | EuDML | Zbl | MR

9. O. Benois, T. Bodineau, P. Buttà and E. Presutti, On the validity of van der Waals theory of surface tension, Markov Process. Related Fields 3 no.2 (1997), 175-198. | Zbl | MR

10. O. Benois, T. Bodineau and E. Presutti, Large deviations in the van der Waals limit, Stochastic Process. Appl. 75 no.1 (1998), 89-104. | Zbl | MR

11. A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions., Proc. Cambridge Philos. Soc. 41 (1945), 103-110. | DOI | Zbl | MR

12. A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II., Proc. Cambridge Philos. Soc. 42 (1946), 1-10. | DOI | Zbl | MR

13. T. Bodineau, The Wulff construction in three and more dimensions., preprint (1999). | DOI | Zbl | MR

14. Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, 1988. | Zbl | MR

15. R. Caccioppoli, Misura e integrazione sugli insiemi dimensionalmente orientati I, II, Rend. Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Ser. VIII Vol. XII fasc. 1, 2 (gennaio-febbraio 1952), 3-11, 137-146. | Zbl | MR

16. R. Caccioppoli, Misura e integrazione sulle varietà parametriche I, II, III, Rend. Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Ser. VIII Vol. XII fasc. 3 , 4 , 6 (marzo-aprile-giugno 1952), 219-227, 365-373, 629-634. | Zbl | MR

17. R. Cerf, Large deviations for i.i.d. random compact sets, Proc. Amer. Math. Soc. 127 (1999), 2431-2436. | DOI | Zbl | MR

18. R. Cerf, Large deviations of the finite cluster shape for two-dimensional percolation in the Hausdorff and L 1 topology, J. Theor. Probab. 12 no.4 (1999), 1137-1163. | MR | Zbl

19. R. Cerf and A. Pisztora, On the Wulff crystal in the Ising model, preprint (1999). | Zbl | MR

20. L. Cesari, Surface area, Princeton University Press, 1956. | Zbl | MR

21. F. Cesi, G. Guadagni, F. Martinelli and R. H. Schonmann, On the 2D stochastic Ising model in the phase coexistence region near the critical point, J. Statist. Phys. 85 no.1/2 (1996), 55-102. | DOI | Zbl | MR

22. G. Congedo and I. Tamanini, Optimal partitions with unbounded data, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX Ser., Rend. Lincei., Mat. Appl. 4 no.2 (1993), 103-108. | EuDML | Zbl | MR

23. G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8 no.2 (1991), 175-195. | DOI | Numdam | EuDML | Zbl | MR

24. E. De Giorgi, Su una teoria generale della misura (r-1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. IV Ser. 36 (1954), 191-213. | DOI | Zbl | MR

25. E. De Giorgi, Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1955), 95-113. | Zbl | MR

26. E. De Giorgi, Sulla proprieta isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. VIII Ser. 5, (1958), 33-44. | Zbl | MR

27. E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Normale Superiore di Pisa, 1972. | Zbl | MR

28. A. Dembo and O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publishers, 1993. | Zbl | MR

29. J. D. Deuschel and A. Pisztora, Surface order large deviations for high-density percolation, Probab. Theory Related Fields 104 no.4 (1996), 467-482. | DOI | Zbl | MR

30. A. Dinghas, Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Kristallogr., Mineral. Petrogr. 105 Abt.A (1944), 304-314. | Zbl | MR

31. R. L. Dobrushin, R. Kotecký and S. B. Shlosman, Wulff construction: a global shape from local interaction, AMS translations series, Providence (Rhode Island), 1992. | DOI | Zbl | MR

32. R. L. Dobrushin and S. B. Shlosman, Thermodynamic inequalities for the surface tension and the geometry of the Wulff construction, Ideas and methods in quantum and statistical physics 2 (1992), S. Albeverio (ed.), Cambridge University Press, 461-483. | Zbl | MR

33. L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, Boca Raton: CRC Press, 1992. | Zbl | MR

34. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics 85, Cambridge Univ. Press, 1985. | Zbl | MR

35. H. Federer, Geometric measure theory, Springer-Verlag, 1969. | Zbl | MR

36. I. Fonseca, Lower semicontinuity of surface energies, Proc. Roy. Soc. Edinb. Sect. A 120 no.1/2 (1992), 99-115. | DOI | Zbl | MR

37. I. Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. Lond. Ser. A 432 no.1884 (1991), 125-145. | DOI | Zbl | MR

38. I. Fonseca and L. Giovanni, Bulk and contact energies: nucleation and relaxation, SIAM J. Math. Anal. 30 no.1 (1999), 190-219. | DOI | Zbl | MR

39. I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinb. Sect. A 119 no.1/2 (1991), 125-136. | DOI | Zbl | MR

40. C. Giacomelli and I. Tamanini, Un tipo di approssimazione "dall'interno" degli insiemi di perimetro finito, Rend. Mat. Acc. Lincei s.9 v.1 (1990), 181-187. | EuDML | Zbl

41. E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, 1984. | DOI | Zbl | MR

42. G. R. Grimmett, Percolation, Springer-Verlag, 1989 | Zbl | MR

43. G. R. Grimmett and J. M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Roy. Soc. Lond., Ser. A 430 no.1879 (1990), 439-457. | DOI | Zbl | MR

44. B. L. Gurevich and G. E. Shilov, Integral, measure and derivative: a unified approach, Prentice-Hall, 1966. | Zbl | MR

45. G. T. Herman and D. Webster, Surfaces of organs in discrete three-dimensional space, Mathematical aspects of computerized tomography, Oberwolfach, Lecture Notes in Med. Inform. 8 (1981), Springer, 204-224. | DOI | Zbl | MR

46. O. Hryniv, On local behaviour of the phase separation line in the 2 D Ising model, Probab. Theory Related Fields 110 no.1 (1998), 91-107. | DOI | Zbl | MR

47. D. Ioffe, Large deviations for the 2D Ising model: a lower bound without cluster expansions, J. Statist. Phys. 74 no.1/2 (1994), 411-432. | DOI | MR | Zbl

48. D. Ioffe, Exact large deviations bounds up to T c for the Ising model in two dimensions, Probab. Theory Related Fields 102 no.3 (1995), 313-330. | DOI | Zbl | MR

49. D. Ioffe and R. H. Schonmann, Dobrushin-Kotecký-Shlosman Theorem up to the critical temperature, Commun. Math. Phys. 199 no.1 (1998), 117-167. | DOI | Zbl | MR

50. H. Kesten and Y. Zhang, The probability of a large finite cluster in supercritical Bernoulli percolation, Ann. Probab. 18 no.2 (1990), 537-555. | DOI | Zbl | MR

51. S. Lang, Differential manifolds, 2nd ed., Springer-Verlag, 1985. | Zbl | MR

52. U. Massari and M. Miranda, Minimal surfaces of codimension one, Mathematics Studies 91, North-Holland, 1984 | Zbl | MR

U. Massari and M. Miranda, Minimal surfaces of codimension one, Notas de Matematica 95, North-Holland, 1984. | Zbl | MR

53. U. Massari and I. Tamanini, Regularity properties of optimal segmentations, J. Reine Angew. Math. 420 (1991), 61-84. | EuDML | Zbl | MR

54. P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability., Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. | Zbl | MR

55. A. Messager, S. Miracle-Solé and J. Ruiz, Convexity properties of the surface tension and equilibrium crystals, J. Statist. Phys. 67 no.3/4 (1992), 449-470. | DOI | Zbl | MR

56. S. Miracle-Solé, Surface tension, step free energy, and facets in the equilibrium crystal, J. Statist. Phys. 79 no.1/2 (1995), 183-214. | DOI | Zbl

57. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math. 42 no.5 (1989), 577-685. | DOI | Zbl | MR

58. C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64 no.7 (1991), 953-1054. | MR

59. C. E. Pfister and Y. Velenik, Large deviations and continuum limit in the 2 D Ising model, Probab. Theory Related Fields 109 no.4 (1997), 435-506. | DOI | Zbl | MR

60. A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 no.4 (1996), 427-466. | DOI | Zbl | MR

61. T. Quentin De Gromard, Approximation forte dans BV(Ω), C. R. Acad. Sci. Paris, Ser. I 301 no.6 (1985), 261-264. | Zbl | MR

62. T. Quentin De Gromard, Strong approximation in BV(Ω), preprint (2000). | MR | Zbl

63. R. T. Rockafellar, Convex analysis, Princeton Univ. Press, New Jersey, 1970. | DOI | MR

64. A. Rosenfeld, Three-dimensional digital topology, Inform. and Control 50 no.2 (1981), 119-127. | DOI | Zbl | MR

65. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987. | Zbl | MR

66. R. H. Schonmann and S. B. Shlosman, Constrained variational problem with applications to the Ising model, J. Statist. Phys. 83 no.5/6 (1996), 867-905. | DOI | Zbl | MR

67. R. H. Schonmann and S. B. Shlosman, Complete analyticity for 2D Ising model completed, Commun. Math. Phys. 170 no.2 (1995), 453-482. | DOI | Zbl | MR

68. R. H. Schonmann and S. B. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models, Commun. Math. Phys. 194 no. 2 (1998), 389-462. | DOI | Zbl | MR

69. Jean E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 no.4 (1978), 568-588. | DOI | Zbl | MR

70. Jean E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Symposia Mathematica 14 no.4 (1974), 499-508. | Zbl | MR

71. Jean E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math. 27 (1975), 419-427. | DOI | Zbl | MR

72. A. Visintin, Models of phase transitions, Progress in Nonlinear Differential Equations and their Applications, 28, Birkhäuser Boston, 1996. | Zbl | MR

73. A. Visintin, Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math. 8 no.2 (1991), 175-201. | DOI | Zbl | MR

74. A. I. Vol'Pert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 no.2 (1967), 225-267, translation of Mat. Sbornik, Tom 73 (115), (1967), no.2. | DOI | Zbl

75. G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Z. Krystallogr. 34 (1901), 449-530.

76. B. Younovitch, Sur la dérivation des fonctions absolument additives d'ensemble., C. R. (Doklady) Acad. Sci. URSS, n. Ser. 30 (1941), 112-114. | JFM | Zbl | MR

77. W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation., Graduate Texts in Mathematics 120, Springer-Verlag, 1989. | DOI | Zbl | MR