Uniformizing Gromov hyperbolic spaces
Astérisque, no. 270 (2001) , 107 p.
@book{AST_2001__270__R1_0,
     author = {Bonk, Mario and Heinonen, Juha and Koskela, Pekka},
     title = {Uniformizing {Gromov} hyperbolic spaces},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {270},
     year = {2001},
     zbl = {0970.30010},
     mrnumber = {1829896},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2001__270__R1_0/}
}
TY  - BOOK
AU  - Bonk, Mario
AU  - Heinonen, Juha
AU  - Koskela, Pekka
TI  - Uniformizing Gromov hyperbolic spaces
T3  - Astérisque
PY  - 2001
DA  - 2001///
IS  - 270
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2001__270__R1_0/
UR  - https://zbmath.org/?q=an%3A0970.30010
UR  - https://www.ams.org/mathscinet-getitem?mr=1829896
LA  - en
ID  - AST_2001__270__R1_0
ER  - 
%0 Book
%A Bonk, Mario
%A Heinonen, Juha
%A Koskela, Pekka
%T Uniformizing Gromov hyperbolic spaces
%S Astérisque
%D 2001
%N 270
%I Société mathématique de France
%G en
%F AST_2001__270__R1_0
Bonk, Mario; Heinonen, Juha; Koskela, Pekka. Uniformizing Gromov hyperbolic spaces. Astérisque, no. 270 (2001), 107 p. http://numdam.org/item/AST_2001__270__R1_0/

[A1] A. Ancona, "On strong barriers and an inequality of Hardy for domains in n ", J. London Math. Soc. 34 (1986), 274-290. | DOI | Zbl | MR

[A2] A. Ancona, "Negatively curved manifolds, elliptic operators, and the Martin boundary", Ann. Math. 125 (1987), 495-536. | DOI | Zbl | MR

[A3] A. Ancona, "Positive harmonic functions and hyperbolicity", In "Potential Theory Surveys and Problems", Lecture Notes in Mathematics 1344, Springer, Berlin, 1988, pp. 1-23. | DOI | Zbl | MR

[Ar] H. Arai, "Degenerate elliptic operators, Hardy spaces and diffusions on strongly pseudoconvex domains", Tôhoku Math. J. (2) 46 (1994), 469-498. | DOI | Zbl | MR

[BB1] Z. Balogh and M. Bonk, "Pseudoconvexity and Gromov hyperbolicity", C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 597-602. | DOI | Zbl | MR

[BB2] Z. Balogh and M. Bonk, "Gromov hyperbolicity and the Kobayashi metric in strictly pseudoconvex domains", Comment. Math. Helv. 75 (2000), 504-533. | DOI | Zbl | MR

[BV1] Z. Balogh and A. Volberg, "Geometric localization, uniformly John property and separated semihyperbolic dynamics", Ark. Math. 34 (1996), 21-49. | DOI | Zbl | MR

[BV2] Z. Balogh and A. Volberg, "Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications", Rev. Mat. Iberoamericana 12, (1996), 299-336. | DOI | EuDML | Zbl | MR

[BePo] A. Beardon and Ch. Pommerenke, "The Poincaré metric of plane domains", J. London Math. Soc. 18 (1978), 475-483. | DOI | Zbl | MR

[Bo] M. Bonk, "Quasi-geodesic segments and Gromov hyperbolic spaces", Geom. Dedicata 62 (1996), 281-298. | DOI | Zbl | MR

[BKR] M. Bonk, P. Koskela, and S. Rohde, "Conformal metrics on the unit ball in Euclidean space", Proc. London Math. Soc. 77 (1998), 635-664. | DOI | Zbl | MR

[BoPa] M. Bourdon and H. Pajot, "Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings", Proc. Amer. Math. Soc. 127 (1999), 2315-2324. | DOI | Zbl | MR

[BoSc] M. Bonk and O. Schramm, "Embeddings of Gromov hyperbolic spaces", Geom. Funct. Anal. 10 (2000), 266-306. | DOI | Zbl | MR

[BuSt] S. M. Buckley and A. Stanoyevitch, "Weak slice conditions and product domains", Preprint, 1999. | MR

[Bu] P. Buser, "A note on the isoperimetric constant", Ann. Sci. École Norm. Sup. 15 (1982), 213-230. | DOI | Numdam | EuDML | Zbl | MR

[C] C. B. Croke, "Some isoperimetric inequalities and eigenvalue estimates", Ann. Sci. École Norm. Sup. 13 (1980), 419-435. | DOI | Numdam | EuDML | Zbl | MR

[CG] L. Capogna and N. Garofalo, "Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics", J. Fourier Anal. Appl. 4 (1998), 403-432. | DOI | EuDML | Zbl | MR

[CDP] M. Coornaert, M. Delzant and T. Papadopoulos, "Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov", Lecture Notes in Mathematics, 1441, Springer, Berlin, 1990. | Zbl | MR

[ET] V. A. Efremovich and E. S. Tihomirova, "Equimorphisms of hyperbolic spaces", Izv. Akad. Nauk SSSR 28 (1964), 1139-1144 (Russian). | Zbl | MR

[Fe] H. Federer, "Geometric measure theory", Springer, Berlin, 1969. | Zbl | MR

[Fl] W. J. Floyd, "Group completions and limit sets of Kleinian groups", Invent. Math. 57 (1980), 205-218. | DOI | EuDML | Zbl | MR

[GN] N. Garofalo and D.-N. Nhieu, "Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces", J. Analyse Math. 74 (1998), 67-97. | DOI | Zbl | MR

[Ge] F. W. Gehring, "Uniform domains and the ubiquitous quasidisk", Jahresber. Deutsch. Math.-Verein. 89 (1987), 88-103. | Zbl | MR

[GeHa] F. W. Gehring and W. K. Hayman, "An inequality in the theory of conformal mapping", J. Math. Pures Appl. 41 (1962), 353-361. | Zbl | MR

[GM] F. W. Gehring and O. Martio, "Quasiextremal distance domains and extension of quasiconformal mappings", J. Analyse Math. 45 (1985), 181-206. | DOI | Zbl | MR

[GO] F. W. Gehring and B. G. Osgood, "Uniform domains and the quasi-hyperbolic metric", J. Analyse Math. 36 (1979), 50-74. | DOI | Zbl | MR

[GePa] F. W. Gehring and B. P. Palka, "Quasiconformally homogeneous domains", J. Analyse Math. 30 (1976), 172-199. | DOI | Zbl | MR

[GhHa] E. Ghys and P. De La Harpe, "Sur les Groupes Hyperboliques d'après Mikhael Gromov", Birkhäuser, Progress in Mathematics, Boston-Basel-Berlin, 1990. | MR | Zbl

[Gr1] M. Gromov, "Metric Structures for Riemannian and Non-Riemannian Spaces", Birkhäuser, Boston, 1999. | Zbl | MR

[Gr2] M. Gromov, "Hyperbolic Groups", Essays in Group Theory, S. Gersten, Editor, MSRI Publication, Springer, 1987, pp. 75-265. | DOI | Zbl | MR

[Gr3] M. Gromov, "Asymptotic invariants of infinite groups", in: Geometric Group Theory, London Math. Soc., Lecture Notes Series 182 (1993). | MR

[GrPa] M. Gromov and P. Pansu, "Rigidity of Lattices: An Introduction." In Geometric Topology: Recent Developments, Lecture Notes in Mathematics 1504, Springer, Berlin, 1991. | Zbl | MR

[HS1] Z-X. He and O. Schramm, "Fixed points, Koebe uniformization and circle packings", Ann. Math. 137 (1993), 369-406. | DOI | Zbl | MR

[HS2] Z-X. He and O. Schramm, "Koebe uniformization for "almost circle domains"", Amer. J. Math. 117 (1995), 653-667. | DOI | Zbl | MR

[Hei] J. Heinonen, "Quasiconformal mappings onto John domains", Rev. Mat. Iberoamericana 5 (1989), 97-123. | DOI | EuDML | Zbl | MR

[HeiK] J. Heinonen and P. Koskela, "Quasiconformal maps in metric spaces with controlled geometry", Acta Math. 181 (1998), 1-61. | DOI | Zbl | MR

[HN] J. Heinonen and R. Näkki, "Quasiconformal distortion on arcs", J. Analyse Math. 63 (1994), 19-53. | DOI | Zbl | MR

[HR] J. Heinonen and S. Rohde, "The Gehring-Hayman theorem for quasihyperbolic geodesics", Math. Proc. Camb. Phil. Soc. 114 (1993), 393-405 | DOI | Zbl | MR

[He1] L. L. Helms, "Introduction to potential theory", Wiley-Interscience, New York, 1969. | Zbl | MR

[Her] D. A. Herron, "The geometry of uniform, quasicircle, and circle domains", Ann. Acad. Sci. Fenn. Ser. A.I. Math. 12 (1987), 217-228. | DOI | Zbl | MR

[HerK] D. A. Herron and P. Koskela, "Quasiextremal distance domains and conformal mappings onto circle domains", Complex Variables Theory Appl. 15 (1990), 167-179. | DOI | Zbl | MR

[HY] J. G. Hocking and G. S. Young, "Topology", Academic Press, 1959. | Zbl | MR

[Ho] I. Holopainen, "Rough isometries and p-harmonic functions with finite Dirichlet integral", Rev. Mat. Iberoamericana 10 (1994), 143-176. | DOI | EuDML | Zbl | MR

[JK] D. S. Jerison and C. E. Kenig, "Boundary behavior of harmonic functions in non-tangentially accessible domains", Adv. Math. 46 (1982), 80-147. | DOI | Zbl | MR

[J] P. W. Jones, "Quasiconformal mappings and extendability of functions in Sobolev spaces", Acta Math. 147 (1981), 71-88. | DOI | Zbl | MR

[La] T. J. Laakso, "Ahlfors 𝒬-regular spaces with arbitrary 𝒬>1 admitting weak Poincaré inequality", Geom. Funct. Anal. 10 (2000), 111-123. | DOI | Zbl | MR

[Le] J. L. Lewis, "Uniformly fat sets", Trans. Amer. Math. Soc. 830 (1988), 177-196. | DOI | Zbl | MR

[M] P. Macmanus, "Catching sets with quasicircles", Rev. Mat. Iberoamericana 15 (1999), 267-277. | DOI | EuDML | Zbl | MR

[MS] O. Martio and J. Sarvas, "Injectivity theorems in plane and space", Ann. Acad. Sci. Fenn. Ser. A. I. Math. 4 (1978), 383-401. | DOI | Zbl | MR

[NV] R. Näkki and J. Väisälä, "John disks", Expo. Math. 9 (1991), 3-43. | Zbl | MR

[N] D.-M. Nhieu, "Extension of Sobolev spaces on the Heisenberg group", C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1559-1564. | Zbl | MR

[Pa] P. Pansu, "Quasiconformal mappings and manifolds of negative curvature", Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Mathematics, 1201, Springer, Berlin, 1986, pp. 212-229. | DOI | Zbl | MR

[Po] Ch. Pommerenke, "On uniformly perfect sets and Fuchsian groups", Analysis 4 (1984), 299-321. | DOI | Zbl | MR

[SC] L. Saloff-Coste, "Uniformly elliptic operators on Riemannian manifolds", J. Differential Geom. 36 (1992), 417-450. | DOI | Zbl | MR

[Sc] O. Schramm, "Transboundary extremal length", J. Analyse Math. 66 (1995), 307-329. | DOI | Zbl | MR

[Seg] S. Segawa, "Martin boundaries of Denjoy domains and quasiconformal mappings", J. Math. Kyoto Univ. 30 (1990), 297-316. | DOI | Zbl | MR

[ST] S. Segawa and T. Tada, "Martin compactifications and quasiconformal mappings", Proc. Amer. Math. Soc. 93 (1985), 242-244. | DOI | Zbl | MR

[Sem] S. Semmes, "Some novel types of fractal geometry", Book Manuscript, 1999. | MR | Zbl

[St] E. M. Stein, "Singular integrals and differentiability properties of functions", Princeton University Press, Princeton, New Jersey, 1970. | Zbl | MR

[Ts] M. Tsuji, "Potential theory in modern function theory", Chelsea, 1959. | MR | Zbl

[Ty] J. Tyson, "Geometric and analytic applications of a generalized definition of the conformal modulus", Thesis, University of Michigan, Ann Arbor, 1999. | MR

[TV] P. Tukia and J. Väisälä, "Quasisymmetric embeddings of metric spaces", Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5 (1980), 97-114. | DOI | Zbl | MR

[V1] J. Väisälä, "Quasimöbius maps", J. Analyse Math. 44 (1984/85), 218-234. | DOI | Zbl | MR

[V2] J. Väisälä, "Quasiconformal maps of cylindrical domains", Acta Math. 162 (1989), 201-225. | DOI | Zbl | MR

[V3] J. Väisälä, "Relatively and inner uniform domains", Conformal Geom. Dynam. 2 (1998), 56-88. | DOI | Zbl | MR

[V4] J. Väisälä, "The free quasiworld. Freely quasiconformal and related maps in Banach spaces", Banach Center Publications 48, Polish Academy of Sciences, Warszawa, 1999. | DOI | EuDML | Zbl | MR

[VG] S. K. Vodopyanov and A. V. Greshnov, "On the continuation of functions of bounded mean oscillation on spaces of homogeneous type with intrinsic metric", Siberian Math. J. 36 (1995), 873-901. | DOI | Zbl | MR