The display of a formal p-divisible group
Cohomologies p-adiques et applications arithmétiques (I), Astérisque, no. 278 (2002), pp. 127-248.
@incollection{AST_2002__278__127_0,
     author = {Zink, Thomas},
     title = {The display of a formal $p$-divisible group},
     booktitle = {Cohomologies $p$-adiques et applications arithm\'etiques (I)},
     editor = {Berthelot Pierre and Fontaine Jean-Marc and Illusie Luc and Kato Kazuya and Rapoport Michael},
     series = {Ast\'erisque},
     pages = {127--248},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {278},
     year = {2002},
     mrnumber = {1922825},
     zbl = {1008.14008},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2002__278__127_0/}
}
TY  - CHAP
AU  - Zink, Thomas
TI  - The display of a formal $p$-divisible group
BT  - Cohomologies $p$-adiques et applications arithmétiques (I)
AU  - Collectif
ED  - Berthelot Pierre
ED  - Fontaine Jean-Marc
ED  - Illusie Luc
ED  - Kato Kazuya
ED  - Rapoport Michael
T3  - Astérisque
PY  - 2002
SP  - 127
EP  - 248
IS  - 278
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2002__278__127_0/
LA  - en
ID  - AST_2002__278__127_0
ER  - 
%0 Book Section
%A Zink, Thomas
%T The display of a formal $p$-divisible group
%B Cohomologies $p$-adiques et applications arithmétiques (I)
%A Collectif
%E Berthelot Pierre
%E Fontaine Jean-Marc
%E Illusie Luc
%E Kato Kazuya
%E Rapoport Michael
%S Astérisque
%D 2002
%P 127-248
%N 278
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2002__278__127_0/
%G en
%F AST_2002__278__127_0
Zink, Thomas. The display of a formal $p$-divisible group, dans Cohomologies $p$-adiques et applications arithmétiques (I), Astérisque, no. 278 (2002), pp. 127-248. http://archive.numdam.org/item/AST_2002__278__127_0/

[BAC] Bourbaki, N.: Algèbre Commutative, Chap. 8 et 9, Masson 1983. | Zbl

[B] Berthelot, P.: Théorie Dieudonné sur un anneau de valuation parfait, Ann. Scient. Éc. Norm. Sup. 13, 225-268, (1980). | DOI | EuDML | Numdam | MR | Zbl

[Br] Breuil, Ch.: Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math. 152 (2000), 489-549. | DOI | EuDML | MR | Zbl

[BO] Berthelot, P., Ogus, A.: Notes on crystalline cohomology, Princeton 1978. | MR | Zbl

[C] Cartier, P.: Relèvements des groupes formels commutatifs, Sém. Bourbaki 1968/69, exp. 359, Springer LNM 179, Berlin 1971. | DOI | EuDML | Numdam | MR | Zbl

[Gr] Grothendieck, A.: Groupes de Barsotti-Tate et cristaux de Dieudonné, Sém. Math. Sup. 45, Presses de l'Univ. de Montreal, 1970. | MR | Zbl

[G] Gross, B. H., On canonical and quasicanonical liftings, Invent. math. 84, 321-326, (1986). | DOI | EuDML | MR | Zbl

[GK] Gross, B. H., Keating, K., On the intersection of modular correspondences, Invent. math. 112, 225-245, (1993). | DOI | EuDML | MR | Zbl

[K] Keating, K., Lifting endomorphisms of formal A-modules, Compos. Math. 67, 211-239, (1988). | EuDML | Numdam | MR | Zbl

[LZ] Langer, A., Zink, Th.: De Rham-Witt cohomology for a proper and smooth morphism. https://www.math.uni-bielefeld.de/~zink/z_publ.html | Zbl

[Me] Messing, W.: The crystals associated to Barsotti-Tate groups, LNM 264, Springer 1972. | MR | Zbl

[Mu] Mumford, D.: Bi-extensions of formal groups, in: Algebraic Geometry, Oxford University Press 1969, pp. 307 -322. | MR | Zbl

[N] Norman, P.: An algorithm for computing local moduli of abelian varieties, Ann. Math. 101, 499-509 (1975). | DOI | MR | Zbl

[RZ] Rapoport, M., Zink, Th.: Period spaces for p-divisible groups, Annals of Mathematics Studies 141, Princeton 1996. | MR | Zbl

[SGA7] Groupes de Monodromie en Géométrie algébrique, Séminaire Géométrie Algébrique, dirigé par A.Grothendieck, Springer Lecture Notes in Mathematics 288, Berlin 1972. | MR | Zbl

[Z1] Zink, Th.: Cartiertheorie kommutativer formaler Gruppen, Teubner Texte zur Mathematik 68, Leipzig 1984. | MR | Zbl

[Z2] Zink, Th.: Cartiertheorie über perfekten Ringen, I, II, Preprints, Akademie der Wissenschaften Berlin 1986.

[Z3] Zink, Th.: A Dieudonné theory of p-divisible groups, in: Class Field Theory- Its Centenary and Prospect, Advanced Studies in Pure Mathematics 30, Tokyo 2001, pp. 139-160. | DOI | MR | Zbl

[Z4] Windows for displays of p-divisible groups, in: Moduli of abelian varietes, Progress in Mathematics vol. 195, Birkhäuser Verlag 2001, pp. 491-518. | MR | Zbl