@incollection{AST_2003__286__1_0, author = {Newhouse, Sheldon}, title = {On the mathematical contributions of {Jacob} {Palis}}, booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {1--24}, publisher = {Soci\'et\'e math\'ematique de France}, number = {286}, year = {2003}, mrnumber = {2052295}, zbl = {1047.37019}, language = {en}, url = {http://archive.numdam.org/item/AST_2003__286__1_0/} }
TY - CHAP AU - Newhouse, Sheldon TI - On the mathematical contributions of Jacob Palis BT - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 1 EP - 24 IS - 286 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2003__286__1_0/ LA - en ID - AST_2003__286__1_0 ER -
%0 Book Section %A Newhouse, Sheldon %T On the mathematical contributions of Jacob Palis %B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 1-24 %N 286 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2003__286__1_0/ %G en %F AST_2003__286__1_0
Newhouse, Sheldon. On the mathematical contributions of Jacob Palis, in Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 1-24. http://archive.numdam.org/item/AST_2003__286__1_0/
[1] measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math., 140(2),351-398, 2000. | DOI | MR | Zbl
, , and .[2] Systèmes grossiers. Dokl. Akad. Nauk. USSR, 14, 247-251, 1937. | JFM | Zbl
and .[3] Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov., 90, 209, 1967. | MR | Zbl
.[4] The dynamics of the Hénon map. Ann. of Math. (2), 133(1), 73-169, 1991. | DOI | MR | Zbl
and .[5] A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Preprint, 1999. | MR | Zbl
, , and .[6] On one-parameter families of diffeomorphisms. II. Generic branching in higher dimensions. Comment. Math. Univ. Carolinae, 12, 765-784, 1971. | EuDML | MR | Zbl
.[7] The topology of holomorphic flows with singularity. Inst. Hautes Études Sci. Publ. Math., 48, 5-38, 1978. | DOI | EuDML | Numdam | MR | Zbl
, , and .[8] Bifurcations and global stability of families of gradients. Inst. Hautes Études Sci. Publ. Math., 70, 103-168, 1989. | DOI | EuDML | Numdam | MR | Zbl
and .[9] Moduli of stability for diffeomorphisms. In Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pages 318-339. Springer, Berlin, 1980. | DOI | MR | Zbl
and .[10] Characterising diffeomorphisms with modulus of stability one. In Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pages 266-285. Springer, Berlin, 1981. | DOI | MR | Zbl
, , and .[11] Robust nonhyperbolic dynamics and heterodimensional cycles. Ergodic Theory Dynam. Systems, 15(2), 291-315, 1995. | MR | Zbl
.[12] Partial hyperbolicity and robust transitivity. Acta Math., 183(1), 1-43, 1999. | DOI | MR | Zbl
, , and .[13] Large measure of hyperbolic dynamics when unfolding heteroclinic cycles. Nonlinearity, 10(4), 857-884, 1997. | DOI | MR | Zbl
and .[14] Time dependent stable diffeomorphisms. Invent. Math., 24, 163-172, 1974. | DOI | EuDML | MR | Zbl
.[15] Three-dimensional dynamical systems that are close to systems with a structurally unstable homoclinic curve. I. Mat. Sb. (N.S.), 88(130), 475-492, 1972. | EuDML | MR | Zbl
and .[16] Absolutely -stable diffeomorphisms. Topology, 11, 195-197, 1972. | DOI | MR | Zbl
.[17] Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math., 50, 59-72, 1979. | DOI | EuDML | Numdam | MR | Zbl
and .[18] Structural stability for flows on the torus with a cross-cap. Trans. Amer.Math. Soc., 241, 311-320, 1978. | DOI | MR | Zbl
.[19] Connecting invariant manifolds and the solution of the stability and -stability conjectures for flows. Ann. of Math. (2), 145(1), 81-137, 1997. | DOI | MR | Zbl
.[20] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., 81(1), 39-88, 1981. | DOI | MR | Zbl
.[21] On the stability conjecture. Chinese Ann. Math., 1(1), 9-30, 1980. | MR | Zbl
.[22] Almost every real quadratic map is either regular or stochastic. Annals of Math. To appear. | MR | Zbl
.[23] Contributions to the stability conjecture. Topology, 17(4), 383-396, 1978. | DOI | MR | Zbl
.[24] An ergodic closing lemma. Ann. of Math. (2), 116(3), 503-540, 1982. | DOI | MR | Zbl
.[25] A proof of the stability conjecture. Inst. Hautes Études Sci. Publ. Math., 66, 161-210, 1988. | DOI | EuDML | Numdam | MR | Zbl
.[26] Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4, 257-302, 1954. | DOI | MR | Zbl
.[27] Abundance of strange attractors. Acta Math., 171(1), 1-71, 1993. | DOI | MR | Zbl
and .[28] Robust transitive singular sets for 3-flows are partially hyperbolic attractors and repellers. Preprint, 1999. | MR | Zbl
, , and .[29] On robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Sér. I Math., 326(1), 81-86, 1998. | DOI | MR | Zbl
, , and .[30] Stable intersections of regular Cantor sets with large Hausdorff dimension. Preprint 1998. | MR | Zbl
and .[31] Tangences homoclines stables pour les ensembles hyperboliques de grande dimension fractale. Preprint 2000. | Numdam | MR | Zbl
and .[32] Nondensity of Axiom on . In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 191-202. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl
.[33] Diffeomorphisms with infinitely many sinks. Topology, 13, 9-18, 1974. | DOI | MR | Zbl
.[34] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 50, 101-151, 1979. | DOI | EuDML | Numdam | MR | Zbl
.[35] Bifurcations of Morse-Smale dynamical systems. In Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 303-366, New York, 1973. Academic Press. | MR | Zbl
and .[36] Cycles and bifurcation theory. Astérisque, 31, 43-140, 1976. | Numdam | MR | Zbl
and .[37] Bifurcations and stability of families of diffeomorphisms. Inst. Hautes Etudes Sci. Publ. Math., 57, 5-71, 1983. | DOI | EuDML | Numdam | MR | Zbl
, , and .[38] On Morse-Smale dynamical systems. Topology, 8, 385-404, 1968. | DOI | MR | Zbl
.[39] Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc., 80, 503-505, 1974. | DOI | MR | Zbl
.[40] A differentiable invariant of topological conjugacies and moduli of stability. Astérisque, 51, 335-346, 1978. | Numdam | MR | Zbl
.[41] A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque, 261, XIII-XIV, 335-347, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995). | Numdam | MR | Zbl
.[42] Structural stability theorems. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 223-231. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl
and .[43] Stability of parametrized families of gradient vector fields. Ann. of Math. (2), 118(3), 383-421, 1983. | DOI | MR | Zbl
and .[44] Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Invent. Math., 82(3), 397-422, 1985. | DOI | EuDML | MR | Zbl
and .[45] Hyperbolicity and the creation of homoclinic orbits. Ann. of Math. (2), 125(2), 337-374, 1987. | DOI | MR | Zbl
and .[46] Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993. | MR | Zbl
and .[47] High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. of Math. (2), 140(1), 207-250, 1994. | DOI | MR | Zbl
and .[48] Centralizers of Anosov diffeomorphisms on tori. Ann. Sci. École Norm. Sup. (4), 22(1), 99-108, 1989. | DOI | EuDML | Numdam | MR | Zbl
and .[49] Rigidity of centralizers of diffeomorphisms. Ann. Sci. École Norm. Sup. (4), 22(1), 81-98, 1989. | DOI | EuDML | Numdam | MR | Zbl
and .[50] Differentiable conjugacies of Morse-Smale diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.), 20(2), 25-48, 1990. | DOI | MR | Zbl
and .[51] Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension. Acta Math., 172(1), 91-136, 1994. | DOI | MR | Zbl
and .[52] Nonuniformily hyperbolic horseshoes unleashed by homoclinic bifurcations and zero density of attractors. C. R. Ac. Sc. Paris, 2000. To appear. | MR | Zbl
and .[53] On structural stability. Ann. of Math. (2), 69, 199-222, 1959. | DOI | MR | Zbl
.[54] Structural stability on two dimensional manifolds. Topology, 1, 101-120, 1962. | DOI | MR | Zbl
.[55] Analysis of the necessity of the conditions of Smale and Robbin for structural stability for periodic systems of differential equations. Differencial'nye Uravnenija, 8, 972-983, 1972. | MR | Zbl
.[56] The closing lemma. Amer. J. Math., 89, 956-1009, 1967. | DOI | MR | Zbl
.[57] The -stability theorem for flows. Invent. Math., 11, 150-158, 1970. | DOI | EuDML | MR | Zbl
and .[58] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis. Annals of Math., 2000. To appear. | EuDML | MR | Zbl
and .[59] On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and varation of entropy. Nonlinearity, 13(3), 921-926, 2000. | DOI | MR | Zbl
and .[60] A structural stability theorem. Ann. of Math. (2), 94, 447-493, 1971. | DOI | MR | Zbl
.[61] Structural stability of vector fields. Ann. of Math. (2), 99, 154-175. 1974. | DOI | MR | Zbl
.[62] Structural stability of diffeomorphisms. J. Differential Equations, 22(1), 28-73, 1976. | DOI | MR | Zbl
.[63] Bifurcation to infinitely many sinks. Comm. Math. Phys., 90(3), 433-459, 1983. | DOI | MR | Zbl
.[64] The stability theorems for discrete dynamical systems on two-dimensional manifolds. Nagoya Math. J., 90, 1-55, 1983. | DOI | MR | Zbl
.[65] Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-817, 1967. | DOI | MR | Zbl
.[66] Generic one-parameter families of vector fields on two-dimensional manifolds. Inst Hautes Études Sci. Publ. Math., 43, 5-46, 1974. | DOI | EuDML | Numdam | MR | Zbl
.[67] Stabilité structurelle et morphogénèse. W. A. Benjamin, Inc., Reading, Mass., 1972. Essai d'une théorie générale des modèles, Mathematical Physics Monograph Series. | MR | Zbl
.[68] The "DA" maps of Smale and structural stability. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 329-334. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl
.