@incollection{AST_2003__287__33_0, author = {Dolgopyat, Dmitry and Wilkinson, Amie}, title = {Stable accessibility is $C^1$ dense}, booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {33--60}, publisher = {Soci\'et\'e math\'ematique de France}, number = {287}, year = {2003}, mrnumber = {2039999}, zbl = {1213.37053}, language = {en}, url = {http://archive.numdam.org/item/AST_2003__287__33_0/} }
TY - CHAP AU - Dolgopyat, Dmitry AU - Wilkinson, Amie TI - Stable accessibility is $C^1$ dense BT - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 33 EP - 60 IS - 287 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2003__287__33_0/ LA - en ID - AST_2003__287__33_0 ER -
%0 Book Section %A Dolgopyat, Dmitry %A Wilkinson, Amie %T Stable accessibility is $C^1$ dense %B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 33-60 %N 287 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2003__287__33_0/ %G en %F AST_2003__287__33_0
Dolgopyat, Dmitry; Wilkinson, Amie. Stable accessibility is $C^1$ dense, in Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 33-60. http://archive.numdam.org/item/AST_2003__287__33_0/
[BV] measures for partially hyperbolic Systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-194. | DOI | MR | Zbl
and ,[Ar] The generic sympletic diffeomorphisms of -dimensional sympletic mamfolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Prépublications d'Orsay 2000-17. | MR | Zbl
,[BonDi] Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996), 357-396. | DOI | MR | Zbl
and[Br] Topological transitwity of one class of dynamical Systems and flows of frames on mamfolds of negative curvature, Func. Anal. Appl. 9 (1975), 9-19. | DOI | Zbl
,[BrPe] Partially hyperbolic dynamical systems, Math. USSR Izvestija 8 (1974), 177-218. | DOI | MR | Zbl
and ,[BuPuWi] Stable ergodicity and Anosov flows, Topology 39 (2000), 149-159. | DOI | MR | Zbl
, and ,[BuPuShWi] Recent results about stable ergodicity, Proc. Symposia AMS 69 (2001), 327-366. | DOI | MR | Zbl
, , and ,[BuWi1] Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. 32 (1999), 859-889. | DOI | EuDML | Numdam | MR | Zbl
and ,[BuWi2] Better center bunching. in preparation.
and ,[HiPuSh] Invariant mamfolds, Lecture Notes in Mathematics, 583, Springer-Verlag, 1977. | MR | Zbl
, and ,[Lo] Controllability of nonlinear Systems on compact mamfolds, SIAM J. Control 12 (1974) 1-4. | DOI | MR | Zbl
,[Mo] On volume elements on manifolds, Trans. AMS. 120 (1965) 285-294. | DOI | MR | Zbl
,[NiTö] An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology 40 (2001) 259-278. | DOI | MR | Zbl
and ,[PP] Stability of mixing for toral extensions of hyperbolic systems. Tr. Mat. Inst. Steklova 216 (1997), Din. Sist. i Smezhnye Vopr., 354-363. | MR | Zbl
and ,[PugSh1] Stable ergodicity and partial hyperbolicity. in International Conference on Dynamical Systems: Montevideo 1995, a Tribute to Ricardo Mañé Pitman Res. Notes in Math. 362 (F. Ledrappier et al, eds.) 182-187. | MR | Zbl
and ,[PugSh2] Stably ergodic dynamical Systems and partial hyperbolicity, J. of Complexity 13 (1997), 125-179. | DOI | MR | Zbl
and ,[PugSh3] Stable ergodicity and julienne quasiconformality. J. Eur. Math. Soc. 2 (2000) 1-52. | DOI | EuDML | MR | Zbl
and ,[ShWi] Stably ergodic approximation: two examples. Ergod. Th. and Dyam. Syst. 20 (2000) 875-893. | DOI | MR | Zbl
and ,[Vi] Dynamics: a probabihstic and geometric perspective Proc. ICM-98, Documenta Math. Extra Vol. I (1998) 557-578. | MR | Zbl
,