Stable accessibility is C 1 dense
Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 33-60.
@incollection{AST_2003__287__33_0,
     author = {Dolgopyat, Dmitry and Wilkinson, Amie},
     title = {Stable accessibility is $C^1$ dense},
     booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {33--60},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {287},
     year = {2003},
     mrnumber = {2039999},
     zbl = {1213.37053},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2003__287__33_0/}
}
TY  - CHAP
AU  - Dolgopyat, Dmitry
AU  - Wilkinson, Amie
TI  - Stable accessibility is $C^1$ dense
BT  - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 33
EP  - 60
IS  - 287
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2003__287__33_0/
LA  - en
ID  - AST_2003__287__33_0
ER  - 
%0 Book Section
%A Dolgopyat, Dmitry
%A Wilkinson, Amie
%T Stable accessibility is $C^1$ dense
%B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 33-60
%N 287
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2003__287__33_0/
%G en
%F AST_2003__287__33_0
Dolgopyat, Dmitry; Wilkinson, Amie. Stable accessibility is $C^1$ dense, in Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 33-60. http://archive.numdam.org/item/AST_2003__287__33_0/

[BV] Bonatti, C. and M. Viana, SRB measures for partially hyperbolic Systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-194. | DOI | MR | Zbl

[Ar] Arnaud, M.-C., The generic sympletic C 1 diffeomorphisms of 4-dimensional sympletic mamfolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Prépublications d'Orsay 2000-17. | MR | Zbl

[BonDi] Bonatti, C. and L. J. Diaz Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996), 357-396. | DOI | MR | Zbl

[Br] Brin, M., Topological transitwity of one class of dynamical Systems and flows of frames on mamfolds of negative curvature, Func. Anal. Appl. 9 (1975), 9-19. | DOI | Zbl

[BrPe] Brin, M. and Ya. Pesin, Partially hyperbolic dynamical systems, Math. USSR Izvestija 8 (1974), 177-218. | DOI | MR | Zbl

[BuPuWi] Burns, K., C. Pugh and A. Wilkinson, Stable ergodicity and Anosov flows, Topology 39 (2000), 149-159. | DOI | MR | Zbl

[BuPuShWi] Burns, K., C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity, Proc. Symposia AMS 69 (2001), 327-366. | DOI | MR | Zbl

[BuWi1] Burns, K. and A. Wilkinson, Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. 32 (1999), 859-889. | DOI | EuDML | Numdam | MR | Zbl

[BuWi2] Burns, K. and A. Wilkinson, Better center bunching. in preparation.

[HiPuSh] Hirsch, M., C. Pugh and M. Shub, Invariant mamfolds, Lecture Notes in Mathematics, 583, Springer-Verlag, 1977. | MR | Zbl

[Lo] Lobry, C., Controllability of nonlinear Systems on compact mamfolds, SIAM J. Control 12 (1974) 1-4. | DOI | MR | Zbl

[Mo] Moser, J., On volume elements on manifolds, Trans. AMS. 120 (1965) 285-294. | DOI | MR | Zbl

[NiTö] Niţică, V. and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology 40 (2001) 259-278. | DOI | MR | Zbl

[PP] Parry, W. and M. Pollicott, Stability of mixing for toral extensions of hyperbolic systems. Tr. Mat. Inst. Steklova 216 (1997), Din. Sist. i Smezhnye Vopr., 354-363. | MR | Zbl

[PugSh1] Pugh, C. and M. Shub, Stable ergodicity and partial hyperbolicity. in International Conference on Dynamical Systems: Montevideo 1995, a Tribute to Ricardo Mañé Pitman Res. Notes in Math. 362 (F. Ledrappier et al, eds.) 182-187. | MR | Zbl

[PugSh2] Pugh, C. and M. Shub, Stably ergodic dynamical Systems and partial hyperbolicity, J. of Complexity 13 (1997), 125-179. | DOI | MR | Zbl

[PugSh3] Pugh, C. and M. Shub, Stable ergodicity and julienne quasiconformality. J. Eur. Math. Soc. 2 (2000) 1-52. | DOI | EuDML | MR | Zbl

[ShWi] Shub, M. and A. Wilkinson, Stably ergodic approximation: two examples. Ergod. Th. and Dyam. Syst. 20 (2000) 875-893. | DOI | MR | Zbl

[Vi] Viana, M., Dynamics: a probabihstic and geometric perspective Proc. ICM-98, Documenta Math. Extra Vol. I (1998) 557-578. | MR | Zbl