Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise
Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 71-87.
@incollection{AST_2003__287__71_0,
     author = {Fern\'andez, Roberto and Toom, Andr\'e},
     title = {Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise},
     booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {71--87},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {287},
     year = {2003},
     mrnumber = {2040001},
     zbl = {1140.82327},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2003__287__71_0/}
}
TY  - CHAP
AU  - Fernández, Roberto
AU  - Toom, André
TI  - Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise
BT  - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 71
EP  - 87
IS  - 287
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2003__287__71_0/
LA  - en
ID  - AST_2003__287__71_0
ER  - 
%0 Book Section
%A Fernández, Roberto
%A Toom, André
%T Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise
%B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 71-87
%N 287
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2003__287__71_0/
%G en
%F AST_2003__287__71_0
Fernández, Roberto; Toom, André. Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise, dans Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 71-87. http://archive.numdam.org/item/AST_2003__287__71_0/

[1] C. Bennett and G. Grinstein. Role of Irreversibility in Stabilizing Complex and Nonergodic Behavior in Locally Interacting Discrete Systems. Phys. Rev. Letters, v. 55 (1985), n. 7, pp. 657-660. | DOI

[2] M. Bramson and L. Gray. A useful renormalization argument. In Random walks, Brownlan motion, and interacting particle systems, 113-152, Birkhäuser Boston, Boston, MA, 1991. | DOI | MR | Zbl

[3] J. Bricmont, A. Kupiainen, and R. Lefevere. Renormalization group pathologies and the definition of Gibbs states. Comm. Math. Phys., 194(2): 359-388, 1998. | DOI | MR | Zbl

[4] A. C. D. Van Enter. The renormalization-group peculiarities of Griffiths and Pearce: What have we learned ? In Mathematical Results in Statistical Mechanics, S. Miracle-Sole, J. Ruiz and V. Zagrebnov eds., World Scientific, Singapore. 1999, pp. 509-26. | MR | Zbl

[5] T. C. Dorlas and A. C. D. Van Enter. Non-Gibbsian limit for large-block majority-spin transformations. J. Stat. Phys., 55:171-181, 1989. | DOI | MR | Zbl

[6] A. C. D. Van Enter, R. Fernandez, and A. D. Sokal. Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys., 72:879-1167, 1993. | DOI | MR | Zbl

[7] A. C. D. Van Enter and J. Lörinczi. Robustness of the non-Gibbsian property: some examples. J. Phys. A, 29:2465-73, 1996. | DOI | MR | Zbl

[8] A. C. D. Van Enter, C. Maes, and S. Shlosman. Dobrushin's program on Gibbsianity restoration: weakly Gibbs and almost Gibbs random fields. In On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc., Providence, RI, 2000, pp. 59-70. | MR | Zbl

[9] A. C. D. Van Enter and S. B. Shlosman. (Almost) Gibbsian description of the sign fields of SOS fields. J. Statist Phys., 92:353-368, 1998. | DOI | MR | Zbl

[10] R. Fernández. Random fields in lattices. The Gibbsianness issue. Resenhas, 3(4):391-421, 1998. | MR | Zbl

[11] R. Fernández. Measures for lattice systems. Phys. A, 263 (1-4): 117-130, 1999. | DOI | MR

R. Fernández. Measures for lattice systems. STAT-PHYS 20 (Paris, 1998).

[12] H.-O. Georgii. Gibbs Measures and Phase Transitions. Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin-New York, 1988. | MR | Zbl

[13] O. K. Kozlov. Gibbs description of a system of random variables. Probl. Inform. Transmission, 10:258-65, 1974. | MR | Zbl

[14] J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion, J. Stat. Phys., v. 46, pp. 39-49, 1987. | DOI | MR

[15] J. L. Lebowitz, C. Maes, and E. R. Speer. Statistical mechanics of probabilistic cellular automata. J. Stat. Phys., 59:117-70, 1990. | DOI | MR | Zbl

[16] J. L. Lebowitz and R. H. Schonmann. Pseudo-free energies and large deviations for non-Gibbsian FKG measures. Prob. Th. Rel Fields, 77:49-64, 1988. | DOI | MR | Zbl

[17] J. Lörinczi, Non-Gibbsianness of the reduced SOS-measure, Stoch. Proc. Appl., v. 74, pp. 83-88, 1998. | DOI | MR | Zbl

[18] J. Lőrinczi and C. Maes. Weakly Gibbsian measures for lattice spin systems. J. Statist. Phys., 89 (3-4): 561-579, 1997. | DOI | MR | Zbl

[19] C. Maes and K. Vande Velde. The interaction potential of a stationary measure of a high-noise spinflip process. J. Math. Phys., 34:3030-1, 1993. | DOI | MR | Zbl

[20] C. Maes and K. Vande Velde. The (non-)Gibbsian nature of states invariant under stochastic transformations. Physica A, 206:587-603, 1994. | DOI

[21] D. Makowiec. Gibbsian versus non-Gibbsian nature of stationary states for Toom probabilistic cellular automata via simulations. Phys. Rev. E, 55:6582-8, 1997. | DOI

[22] D. Makowiec. Stationary states of Toom cellular automata in simulations. Phys. Rev. E, 60:3787-95, 1999. | DOI

[23] F. Martinelli and E. Scoppola. A simple stochastic cluster dynamics: rigorous results. J. Phys. A, 24:3135-57, 1991. | DOI | MR

[24] M. B. Petrovskaya, I. I. Piatetski-Shapiro and N. B. Vasilyev. Modelling of voting with random errors. Automatics and telemechanics, v. 10, pp. 103-107, 1969 (in Russian). | Zbl

[25] C.-E. Pfister. Thermodynamical aspects of classical lattice systems. Preprint. Notes for a minicourse at the IV-th Brazilian School of Probability, Mambucaba, Brazil, August 2000. | MR | Zbl

[26] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970. | DOI | MR | Zbl

[27] A. L. Toom. On invariant measures in non-ergodic random media. In Probabilistic Methods of Investigation, A. Kolmogorov, editor, Moscow University Press, Moscow, 1972, pp. 43-51. (In Russian).

[28] A. L. Toom. Nonergodic multidimensional systems of automata. Probl. Inform. Transmission, 10(3):70-79, 1974. | MR | Zbl

[29] A. L. Toom. Stable and attractive trajectories in multicomponent systems. In Multicomponent Random Systems. Advances in Probability and Related Topics, R. Dobrushin and Ya. Sinai eds., Dekker, New York, 1980, v. 6, pp. 549-576. | MR | Zbl

[30] K. Vande Velde. On the question of quasilocality in large systems of locally interacting components. K. U. Leuven thesis, 1995. | MR