@incollection{AST_2009__327__1_0, author = {Aida, Shigeki}, title = {Semi-classical limit of the lowest eigenvalue of a {Schr\"odinger} operator on a {Wiener} space: {I.} {Unbounded} one particle {Hamiltonians}}, booktitle = {From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut}, editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping}, series = {Ast\'erisque}, pages = {1--16}, publisher = {Soci\'et\'e math\'ematique de France}, number = {327}, year = {2009}, mrnumber = {2642349}, zbl = {1194.81092}, language = {en}, url = {http://archive.numdam.org/item/AST_2009__327__1_0/} }
TY - CHAP AU - Aida, Shigeki TI - Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians BT - From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut AU - Collectif ED - Dai Xianzhe ED - Léandre Rémi ED - Xiaonan Ma ED - Zhang Weiping T3 - Astérisque PY - 2009 SP - 1 EP - 16 IS - 327 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2009__327__1_0/ LA - en ID - AST_2009__327__1_0 ER -
%0 Book Section %A Aida, Shigeki %T Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians %B From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut %A Collectif %E Dai Xianzhe %E Léandre Rémi %E Xiaonan Ma %E Zhang Weiping %S Astérisque %D 2009 %P 1-16 %N 327 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2009__327__1_0/ %G en %F AST_2009__327__1_0
Aida, Shigeki. Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians, dans From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 1-16. http://archive.numdam.org/item/AST_2009__327__1_0/
[1] Semiclassical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space", J. Funct. Anal. 203 (2003), p. 401-424. | DOI | MR | Zbl
- "[2] Semi-classical limit of the bottom of spectrum of a Schrödinger operator on a path space over a compact Riemannian manifold", J. Funct. Anal. 251 (2007), p. 59-121. | DOI | MR | Zbl
, "[3] Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space. II. -model on a finite volume", J. Funct. Anal. 256 (2009), p. 3342-3367. | DOI | MR | Zbl
, "[4] Algebras of pseudodifferential operators in given by smooth measures on Hilbert spaces", Math. Nachr. 192 (1998), p. 5-22. | DOI | MR | Zbl
& - "[5] Trace formulas, a Golden-Thompson inequality and classical limit in boson Fock space", J. Funct. Anal. 136 (1996), p. 510-547. | DOI | MR | Zbl
- "[6] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge Univ. Press, 1999. | MR | Zbl
& -[7] Logarithmic Sobolev inequalities", Amer. J. Math. 97 (1975), p. 1061-1083. | DOI | MR | Zbl
- "[8] Semiclassical analysis, Witten Laplacians, and statistical mechanics, Series in Partial Differential Equations and Applications, vol. 1, World Scientific Publishing Co. Inc., 2002. | DOI | MR | Zbl
-[9] Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Math., vol. 1862, Springer, 2005. | MR | Zbl
& -[10] Stochastic Wess-Zumino-Witten model over a symplectic manifold", J. Geom. Phys. 21 (1997), p. 307-336. | DOI | MR | Zbl
- "[11] Cover of the Brownian bridge and stochastic symplectic action", Rev. Math. Phys. 12 (2000), p. 91-137. | DOI | MR | Zbl
, "[12] The Euclidean (quantum) field theory, Princeton Univ. Press, 1974, Princeton Series in Physics. | MR | Zbl
-[13] Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions", Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), p. 295-308. | EuDML | Numdam | MR | Zbl
, "[14] Hypercontractive semigroups and two dimensional self-coupled Bose fields", J. Functional Analysis 9 (1972), p. 121-180. | DOI | MR | Zbl
& - "