Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem
From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 223-235.
@incollection{AST_2009__328__223_0,
     author = {Liu, Kefeng and Xu, Hao},
     title = {Mirzakharni's recursion formula is equivalent to the {Witten-Kontsevich} theorem},
     booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     pages = {223--235},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {328},
     year = {2009},
     mrnumber = {2674878},
     zbl = {1194.14040},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2009__328__223_0/}
}
TY  - CHAP
AU  - Liu, Kefeng
AU  - Xu, Hao
TI  - Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem
BT  - From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut
AU  - Collectif
ED  - Dai Xianzhe
ED  - Léandre Rémi
ED  - Xiaonan Ma
ED  - Zhang Weiping
T3  - Astérisque
PY  - 2009
SP  - 223
EP  - 235
IS  - 328
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2009__328__223_0/
LA  - en
ID  - AST_2009__328__223_0
ER  - 
%0 Book Section
%A Liu, Kefeng
%A Xu, Hao
%T Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem
%B From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut
%A Collectif
%E Dai Xianzhe
%E Léandre Rémi
%E Xiaonan Ma
%E Zhang Weiping
%S Astérisque
%D 2009
%P 223-235
%N 328
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2009__328__223_0/
%G en
%F AST_2009__328__223_0
Liu, Kefeng; Xu, Hao. Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem, dans From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 223-235. http://archive.numdam.org/item/AST_2009__328__223_0/

[1] "A Maple program to compute higher Weil-Petersson volumes" - 2007, http://www.cms.zju.edu.cn/news.asp?id=1214&ColumnName=pdfbook&Version=english.

[2] E. Arbarello & M. Cornalba - "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves", J. Algebraic Geom. 5 (1996), p. 705-749. | MR | Zbl

[3] L. Chen, Y. Li & K. Liu - "Localization, Hurwitz numbers and the Witten conjecture", Asian J. Math. 12 (2008), p. 511-518. | DOI | MR | Zbl

[4] R. Dijkgraaf, H. Verlinde & E. Verlinde - "Topological strings in d<1", Nuclear Phys. B 352 (1991), p. 59-86. | DOI | MR

[5] N. Do & P. Norbury - "Weil-Petersson volumes and cone surfaces", Geom. Dedicata 141 (2009), p. 93-107. | DOI | MR | Zbl

[6] B. Eynard - "Recursion between Mumford volumes of moduli spaces", preprint arXiv:0706.4403. | DOI | MR | Zbl

[7] B. Eynard & N. Orantin - "Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models", preprint arXiv:0705.3600.

[8] C. Faber - "Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians", in New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, 1999, p. 93-109. | DOI | MR | Zbl

[9] C. Itzykson & J.-B. Zuber - "Combinatorics of the modular group. II. The Kontsevich integrals", Internat. J. Modem Phys. A 7 (1992), p. 5661-5705. | DOI | MR | Zbl

[10] A. Kabanov & T. Kimura - "Intersection numbers and rank one cohomological field theories in genus one", Comm. Math. Phys. 194 (1998), p. 651-674. | DOI | MR | Zbl

[11] R. Kaufmann, Y. I. Manin & D. Zagier - "Higher Weil-Petersson volumes of moduli spaces of stable n -pointed curves", Comm. Math. Phys. 181 (1996), p. 763-787. | DOI | MR | Zbl

[12] M. E. Kazarian & S. K. Lando - "An algebro-geometric proof of Witten's conjecture", J. Amer. Math. Soc. 20 (2007), p. 1079-1089. | DOI | MR | Zbl

[13] Y.-S. Kim & K. Liu - "Virasoro constraints and Hurwitz numbers through asymptotic analysis", Pacific J. Math. 241 (2009), p. 275-284. | DOI | MR | Zbl

[14] M. Kontsevich - "Intersection theory on the moduli space of curves and the matrix Airy function", Comm. Math. Phys. 147 (1992), p. 1-23. | DOI | MR | Zbl

[15] J. Lamperti - "On the coefficients of reciprocal power series", Amer. Math. Monthly 65 (1958), p. 90-94. | DOI | MR | Zbl

[16] K. Liu & H. Xu - "New properties of the intersection numbers on moduli spaces of curves", Math. Res. Lett. 14 (2007), p. 1041-1054. | DOI | MR | Zbl

[17] K. Liu & H. Xu, "Recursion formulae of higher Weil-Petersson volumes", Int. Math. Res. Not. 2009 (2009), p. 835-859. | MR | Zbl

[18] Y. I. Manin & P. Zograf - "Invertible cohomological field theories and Weil-Petersson volumes", Ann. Inst. Fourier (Grenoble) 50 (2000), p. 519-535. | DOI | EuDML | MR | Zbl

[19] M. Mirzakhani - "Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces", Invent Math. 167 (2007), p. 179-222. | DOI | MR | Zbl

[20] M. Mirzakhani, "Weil-Petersson volumes and intersection theory on the moduli space of curves", J. Amer. Math. Soc. 20 (2007), p. 1-23. | DOI | MR | Zbl

[21] M. Mulase & B. Safnuk - "Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy", Indian J. Math. 50 (2008), p. 189-218. | MR | Zbl

[22] A. Okounkov & R. Pandharipande - "Gromov-Witten theory, Hurwitz numbers, and matrix models", in Algebraic geometry-Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., 2009, p. 325-414. | MR | Zbl

[23] B. Safnuk - "Integration on moduli spaces of stable curves through localization", Differential Geom. Appl. 27 (2009), p. 179-187. | DOI | MR | Zbl

[24] E. Witten - "Two-dimensional gravity and intersection theory on moduli space", in Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., 1991, p. 243-310. | MR | Zbl

[25] S. Wolpert - "On the homology of the moduli space of stable curves", Ann. of Math. 118 (1983), p. 491-523. | DOI | MR | Zbl

[26] P. Zograf - "An algorithm for computing Weil-Petersson volumes of moduli spaces of curves", preprint Institut Mittag-Leffler, 2006/07.