Formes automorphes et théorèmes de Riemann-Roch arithmétiques
From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 237-253.
@incollection{AST_2009__328__237_0,
     author = {Maillot, Vincent and R\"ossler, Damian},
     title = {Formes automorphes et th\'eor\`emes de {Riemann-Roch} arithm\'etiques},
     booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     pages = {237--253},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {328},
     year = {2009},
     mrnumber = {2674879},
     zbl = {1232.14016},
     language = {fr},
     url = {http://archive.numdam.org/item/AST_2009__328__237_0/}
}
TY  - CHAP
AU  - Maillot, Vincent
AU  - Rössler, Damian
TI  - Formes automorphes et théorèmes de Riemann-Roch arithmétiques
BT  - From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut
AU  - Collectif
ED  - Dai Xianzhe
ED  - Léandre Rémi
ED  - Xiaonan Ma
ED  - Zhang Weiping
T3  - Astérisque
PY  - 2009
SP  - 237
EP  - 253
IS  - 328
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2009__328__237_0/
LA  - fr
ID  - AST_2009__328__237_0
ER  - 
%0 Book Section
%A Maillot, Vincent
%A Rössler, Damian
%T Formes automorphes et théorèmes de Riemann-Roch arithmétiques
%B From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut
%A Collectif
%E Dai Xianzhe
%E Léandre Rémi
%E Xiaonan Ma
%E Zhang Weiping
%S Astérisque
%D 2009
%P 237-253
%N 328
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2009__328__237_0/
%G fr
%F AST_2009__328__237_0
Maillot, Vincent; Rössler, Damian. Formes automorphes et théorèmes de Riemann-Roch arithmétiques, dans From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 237-253. http://archive.numdam.org/item/AST_2009__328__237_0/

[1] Théorie des intersections et théorème de Riemann-Roch - in Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6) (P. Berthelot, A. Grothendieck & L. Illu-sie, éds.), Lecture Notes in Math., vol. 225, Springer, 1971. | MR | Zbl

[2] D. Abramovich - Subvarieties of semiabelian varieties, Compositio Math. 90 (1994), p. 37-52. | EuDML | Numdam | MR | Zbl

[3] W. P. Barth, K. Hulek, C. A. M. Peters & A. Van De Ven - Compact complex surfaces, 2e éd., Ergebnisse Math. Grenzg. 3. Folge, vol. 4, Springer, 2004. | MR | Zbl

[4] J.-M. Bismut & K. Köhler - Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (1992), p. 647-684. | MR | Zbl

[5] R. E. Borcherds - The moduli space of Enriques surfaces and the fake monster Lie superalgebra, Topology 35 (1996), p. 699-710. | DOI | MR | Zbl

[6] J.-B. Bost - Intrinsic heights of stable varieties and abelian varieties, Duke Math. J. 82 (1996), p. 21-70. | DOI | MR | Zbl

[7] W. Fulton - Intersection theory, 2e éd., Ergebnisse Math. Grenzg.. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer, 1998. | MR | Zbl

[8] H. Gillet, D. Rössler & C. Soulé - An arithmetic Riemann-Roch theorem in higher degrees, Ann. Inst. Fourier (Grenoble) 58 (2008), p. 2169-2189. | DOI | EuDML | Numdam | MR | Zbl

[9] H. Gillet & C. Soulé - Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. 131 (1990), p. 163-203. | DOI | MR | Zbl

[10]H. Gillet, D. Rössler & C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. 131 (1990), p. 205-238. | DOI | MR | Zbl

[11] H. Gillet, D. Rössler & C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), p. 473-543. | DOI | EuDML | MR | Zbl

[12] F. Hirzebruch - Topological methods in algebraic geometry, Grundl. Math. Wiss., vol. 131, Springer, 1966. | MR | Zbl

[13] K. Köhler & D. Rössler - A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), p. 333-396. | DOI | MR | Zbl

[14] J. Kramer & R. Salvati Manni - An integral characterizing the Andreotti-Mayer locus, Abh. Math. Sem. Univ. Hamburg 72 (2002), p. 47-57. | DOI | MR | Zbl

[15] V. Maillot & D. Rössler - On the periods of motives with complex multiplication and a conjecture of Gross-Deligne, Ann. of Math. 160 (2004), p. 727-754. | DOI | MR | Zbl

[16] L. Moret-Bailly - Sur l'équation fonctionnelle de la fonction thêta de Riemann, Compositio Math. 75 (1990), p. 203-217. | EuDML | Numdam | MR | Zbl

[17] C. Mourougane - Computations of Bott-Chern classes on 𝐏(E), Duke Math. J. 124 (2004), p. 389-420. | DOI | MR | Zbl

[18] D. Mumford - Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston Inc., 2007. | MR | Zbl

[19] G. Pappas - Grothendieck-Riemann-Roch and the moduli of Enriques surfaces, Math. Res. Lett. 15 (2008), p. 117-120. | DOI | MR | Zbl

[20] D. B. Ray & I. M. Singer - Analytic torsion for complex manifolds, Ann. of Math. 98 (1973), p. 154-177. | DOI | MR | Zbl

[21] D. Rössler - An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), p. 61-126. | DOI | MR | Zbl

[22] D. Rössler, Riemann-Roch formulae in Arakelov geometry and applications. (2006), lecture notes.

[23] H. Tamvakis - Bott-Chern forms and arithmetic intersections, Enseign. Math. 43 (1997), p. 33-54. | MR | Zbl

[24] R. W. Thomason - Une formule de Lefschetz en K-théorie équivariante algébrique, Duke Math. J. 68 (1992), p. 447-462. | DOI | MR | Zbl

[25] J. R. O. Wells - Differential analysis on complex manifolds, 3e éd., Graduate Texts in Math., vol. 65, Springer, 2008. | MR | Zbl

[26] K.-I. Yoshikawa - Discriminant of theta divisors and Quillen metrics, J. Differential Geom. 52 (1999), p. 73-115. | DOI | MR | Zbl

[27] K.-I. Yoshikawa, K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, Invent. Math. 156 (2004), p. 53-117. | DOI | MR | Zbl