@incollection{AST_2009__328__339_0, author = {Paul, Sean Timothy and Tian, Gang}, title = {$CM$ stability and the generalized {Futaki} invariant {II}}, booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut}, editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping}, series = {Ast\'erisque}, pages = {339--354}, publisher = {Soci\'et\'e math\'ematique de France}, number = {328}, year = {2009}, mrnumber = {2674882}, zbl = {1204.53061}, language = {en}, url = {http://archive.numdam.org/item/AST_2009__328__339_0/} }
TY - CHAP AU - Paul, Sean Timothy AU - Tian, Gang TI - $CM$ stability and the generalized Futaki invariant II BT - From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut AU - Collectif ED - Dai Xianzhe ED - Léandre Rémi ED - Xiaonan Ma ED - Zhang Weiping T3 - Astérisque PY - 2009 SP - 339 EP - 354 IS - 328 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2009__328__339_0/ LA - en ID - AST_2009__328__339_0 ER -
%0 Book Section %A Paul, Sean Timothy %A Tian, Gang %T $CM$ stability and the generalized Futaki invariant II %B From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut %A Collectif %E Dai Xianzhe %E Léandre Rémi %E Xiaonan Ma %E Zhang Weiping %S Astérisque %D 2009 %P 339-354 %N 328 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2009__328__339_0/ %G en %F AST_2009__328__339_0
Paul, Sean Timothy; Tian, Gang. $CM$ stability and the generalized Futaki invariant II, dans From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 339-354. http://archive.numdam.org/item/AST_2009__328__339_0/
[1] Uniqueness of Einstein Kähler metrics modulo connected group actions", in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 11-40. | DOI | MR | Zbl
& - "[2] The Bergman kernel and a theorem of Tian", in Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser, 1999, p. 1-23. | MR | Zbl
- "[3] Geometry of Kähler metrics and foliations by holomorphic discs", preprint arXiv:math.DG/0507148, 2005. | Numdam | MR | Zbl
& - "[4] Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110 (1992), p. 315-335. | DOI | EuDML | MR | Zbl
& - "[5] Scalar curvature and stability of toric varieties", J. Differential Geom. 62 (2002), p. 289-349. | DOI | MR | Zbl
- "[6] An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73 (1983), p. 437-443. | DOI | EuDML | MR | Zbl
- "[7] Sobolev and isoperimetric inequalities for Riemannian submanifolds", Comm. Pure Appl. Math. 27 (1974), p. 715-727. | DOI | MR | Zbl
& - "[8] The projectivity of the moduli space of stable curves. I. Preliminaries on "det" and "Div"", Math. Scand. 39 (1976), p. 19-55. | DOI | EuDML | MR | Zbl
& - "[9] energy and stability on hypersurfaces", Comm. Anal. Geom. 12 (2004), p. 601-630. | DOI | MR | Zbl
- "[10] -energy maps integrating Futaki invariants", Tohoku Math. J. 38 (1986), p. 575-593. | DOI | MR | Zbl
- "[11] Sobolev and mean-value inequalities on generalized submanifolds of ", Comm. Pure Appl. Math. 26 (1973), p. 361-379. | DOI | MR | Zbl
& - "[12] Stability of projective varieties", Enseignement Math. 23 (1977), p. 39-110. | MR | Zbl
- "[13] Analysis of geometric stability", Int. Math. Res. Not. 2004 (2004), p. 2555-2591. | DOI | MR | Zbl
& - "[14] Stability and the generalised Futaki invariant I", preprint arXiv:math.AG/0605278, 2006.
& , "[15] Canonical coordinates and Bergmann [Bergman] metrics", Comm. Anal. Geom. 6 (1998), p. 589-631. | DOI | MR | Zbl
- "[16] On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32 (1990), p. 99-130. | DOI | MR | Zbl
- "[17] Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130 (1997), p. 1-37. | DOI | MR | Zbl
, "[18] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I", Comm. Pure Appl. Math. 31 (1978), p. 339-411. | DOI | MR | Zbl
- "[19] Szego kernels and a theorem of Tian", Int. Math. Res. Not. 1998 (1998), p. 317-331. | DOI | MR | Zbl
- "