@incollection{AST_2010__331__1_0, author = {Stevens, Glenn}, title = {Coleman's $\mathcal{L}$-invariant and families of modular forms}, booktitle = {Repr\'esentations $p$-adiques de groupes $p$-adiques III : m\'ethodes globales et g\'eom\'etriques}, series = {Ast\'erisque}, pages = {1--12}, publisher = {Soci\'et\'e math\'ematique de France}, number = {331}, year = {2010}, mrnumber = {2667884}, zbl = {1233.11075}, language = {en}, url = {http://archive.numdam.org/item/AST_2010__331__1_0/} }
TY - CHAP AU - Stevens, Glenn TI - Coleman's $\mathcal{L}$-invariant and families of modular forms BT - Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques AU - Collectif T3 - Astérisque PY - 2010 SP - 1 EP - 12 IS - 331 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2010__331__1_0/ LA - en ID - AST_2010__331__1_0 ER -
%0 Book Section %A Stevens, Glenn %T Coleman's $\mathcal{L}$-invariant and families of modular forms %B Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques %A Collectif %S Astérisque %D 2010 %P 1-12 %N 331 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2010__331__1_0/ %G en %F AST_2010__331__1_0
Stevens, Glenn. Coleman's $\mathcal{L}$-invariant and families of modular forms, dans Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques, Astérisque, no. 331 (2010), pp. 1-12. http://archive.numdam.org/item/AST_2010__331__1_0/
[1] Reciprocity laws on curves", Compositio Math. 72 (1989), p. 205-235. | EuDML | Numdam | MR | Zbl
- "[2] A -adic Shimura isomorphism and -adic periods of modular forms", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc, 1994, p. 21-51. | DOI | MR | Zbl
- "[3] Classical and overconvergent modular forms", Invent. Math. 124 (1996), p. 215-241. | DOI | MR | Zbl
- "[4] -adic Banach spaces and families of modular forms", Invent. Math.127 (1997), p. 417-479. | DOI | MR | Zbl
- "[5] Hidden structures on semistable curves", preprint, 2007.
& - "[6] Numerical experiments on families of -adic modular forms", in Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc. 1998, p. 143-158. | DOI | MR | Zbl
, & - "[7] Numerical solution of the -adic hypergeo-metric equation", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 53-62. | DOI | MR | Zbl
& - "[8] La conjecture de Birch et Swinnerton-Dyer -adique", Astérisque 294 (2004), p. 251-319. | Numdam | MR | Zbl
- "[9] Zéros supplémentaires de fonctions -adiques de formes modulaires", in Algebra and number theory, Hindustan Book Agency, 2005, p. 193-210. | DOI | MR | Zbl
- "[10] Invariants et dérivées de valeurs propres de Frobenius", this volume. | Numdam | Zbl
- "[11] -adic -functions and -adic periods of modular forms", Invent. Math. 111 (1993), p. 407-447. | DOI | EuDML | Zbl
& - "[12] On the conjecture of Mazur, Tate, and Teitelbaum", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 183-211. | DOI | MR | Zbl
& "[13] Lectures at the Émile Borel center", first semester 1997.
, & - "[14] -adic properties of modular schemes and modular forms", in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, 1973, p. 69-190. Lecture Notes in Mathematics, Vol. 350. | DOI | MR | Zbl
- "[15] On monodromy invariants occurring in global arithmetic, and Fontaine's theory", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 1-20. | DOI | MR | Zbl
- "[16] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer", Invent. Math. 84 (1986), p. 1-48. | DOI | EuDML | MR | Zbl
, & - "[17] Lectures at the Émile Borel center", first semester 2000.
- "[18] Values of -adic -functions and a -adic Poisson kernel", Invent. Math. 101 (1990), p. 395-410. | DOI | EuDML | MR | Zbl
- "