La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre
The classical Birch and Swinnerton-Dyer’s conjecture asserts that the order
Mot clés : courbe elliptique, fonction
Keywords: elliptic curve,
@incollection{SB_2002-2003__45__251_0, author = {Colmez, Pierre}, title = {La conjecture de {Birch} et {Swinnerton-Dyer} $\mathbf {p}$-adique}, booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923}, series = {Ast\'erisque}, note = {talk:919}, pages = {251--319}, publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France}, address = {Paris}, number = {294}, year = {2004}, mrnumber = {2111647}, zbl = {1094.11025}, language = {fr}, url = {https://www.numdam.org/item/SB_2002-2003__45__251_0/} }
TY - CHAP AU - Colmez, Pierre TI - La conjecture de Birch et Swinnerton-Dyer $\mathbf {p}$-adique BT - Séminaire Bourbaki : volume 2002/2003, exposés 909-923 AU - Collectif T3 - Astérisque N1 - talk:919 PY - 2004 SP - 251 EP - 319 IS - 294 PB - Association des amis de Nicolas Bourbaki, Société mathématique de France PP - Paris UR - https://www.numdam.org/item/SB_2002-2003__45__251_0/ LA - fr ID - SB_2002-2003__45__251_0 ER -
%0 Book Section %A Colmez, Pierre %T La conjecture de Birch et Swinnerton-Dyer $\mathbf {p}$-adique %B Séminaire Bourbaki : volume 2002/2003, exposés 909-923 %A Collectif %S Astérisque %Z talk:919 %D 2004 %P 251-319 %N 294 %I Association des amis de Nicolas Bourbaki, Société mathématique de France %C Paris %U https://www.numdam.org/item/SB_2002-2003__45__251_0/ %G fr %F SB_2002-2003__45__251_0
Colmez, Pierre. La conjecture de Birch et Swinnerton-Dyer $\mathbf {p}$-adique, dans Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 919, pp. 251-319. https://www.numdam.org/item/SB_2002-2003__45__251_0/
[1] “Anticyclotomic Iwasawa theory of CM elliptic curves”, preprint, 2003. | Numdam | MR | Zbl
& -
[2] “Interpolation
[3] -, “Duals” 1978), Nijmegen, Math. Institut Katholische Univ., 1978, p. 1-15.
[4] “Distributions
[5] “Une preuve de la conjecture de Mahler-Manin”, Invent. Math. 124 (1996), p. 1-9. | MR | Zbl
, , & -
[6] “Fonctions zêta
[7] “Higher regulators and values of
[8] -, “Higher regulators of modular curves”, Contemp. Math. 55 (1986), p. 1-34. | MR
[9] “Congruences endoscopiques et représentations galoisiennes”, Thèse, Université Paris 11, 2002.
-
[10] “Formes non tempérées pour
[11] “On Iwasawa theory of crystalline representations”, Duke Math. J. 104 (2000), p. 211-267. | MR | Zbl
-
[12] “Représentations
[13] -, “Représentations de de Rham et normes universelles”, Bull. Soc. math. France (à paraître). | Numdam | Zbl
[14] “Heegner points on Mumford-Tate curves”, Invent. Math. 126 (1996), p. 413-456. | MR | Zbl
& -[15] -, “A rigid analytic Gross-Zagier formula and arithmetic applications, with Appendix by B. Edixhoven”, Ann. of Math. 146 (1997), p. 117-147. | MR | Zbl
[16] -, “Heegner points,
[17] -, “
[18] -, “The
[19] -, “Iwasawa's main conjecture for elliptic curves in the anticyclotomic setting”, preprint.
[20] “Teitelbaum's conjecture in the anticyclotomic setting”, Amer. J. Math. 124 (2002), p. 411-449. | MR | Zbl
, , & -[21] “Relations d'orthogonalité sur les groupes de Mordell-Weil”, in Séminaire de théorie des nombres, Paris 1984-85, Progress in Math., vol. 63, Birkhäuser, 1986, p. 33-39. | MR | Zbl
-
[22] “Syntomic regulators and
[23] -, “Syntomic regulators and
[24] -, “The
[25] “Notes on elliptic curves. I”, J. reine angew. Math. 212 (1963), p. 7-25. | MR | Zbl
& -[26] -, “Notes on elliptic curves. II”, J. reine angew. Math. 218 (1965), p. 79-108. | MR | Zbl
[27] “Tamagawa numbers of motives and
[28] “Algebraic leaves of algebraic foliations over number fields”, Publ. Math. Inst. Hautes Études Sci. 93 (2001), p. 161-221. | Numdam | MR | Zbl
-
[29] “On the modularity of elliptic curves over
[30] “On the units of algebraic number fields”, Mathematika 14 (1967), p. 121-124. | MR | Zbl
-
[31] “Sur les représentations
[32] “Arithmetic on an elliptic curve”, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, p. 234-246. | MR | Zbl
-[33] -, “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc. (2) 41 (1966), p. 193-291. | MR | Zbl
[34] “Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta
[35] “Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. et G. Chudnovsky)”, in Sém. Bourbaki 2000/01, Astérisque, vol. 282, Société Mathématique de France, 2002, exp. no 886, p. 175-209. | Numdam | MR | Zbl
-
[36] “Représentations
[37] -, “Théorie d’Iwasawa des représentations
[38] “Padé approximations and Diophantine geometry”, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), p. 2212-2216. | MR | Zbl
& -[39] “The work of Mazur and Wiles on cyclotomic fields”, in Sém. Bourbaki 1980/81, Lect. Notes in Math., vol. 901, Springer, 1981, exp. no 575, p. 220-242. | Numdam | MR | Zbl
-
[40] -, “The work of Gross and Zagier on Heegner points and the derivatives of
[41] “On the conjecture of Birch and Swinnerton-Dyer”, Invent. Math. 39 (1977), p. 223-251. | MR | Zbl
& -
[42] -, “On
[43] “Division values in local fields”, Invent. Math. 53 (1979), p. 91-116. | MR | Zbl
-[44] -, “The dilogarithm and the norm residue symbol”, Bull. Soc. math. France 109 (1981), p. 373-402. | Numdam | MR | Zbl
[45] -, “A
[46] “
[47] “Hidden structures on semi-stable curves”, preprint, 2003.
& -
[48] “Résidu en
[49] -, Intégration sur les variétés
[50] -, “Représentations
[51] -, “Théorie d'Iwasawa des représentations de de Rham d'un corps local”, Ann. of Math. 148 (1998), p. 485-571. | MR | Zbl
[52] -, “Fonctions
[53] -, “Arithmétique de la fonction zêta”, in La fonction zêta, Journées X-UPS, Éditions de l'École polytechnique, Palaiseau, 2002, p. 37-164.
[54] -, “Espaces de Banach de dimension finie”, J. Inst. Math. Jussieu 1 (2002), p. 331-439. | MR | Zbl
[55] -, “Invariants
[56] -, “Les conjectures de monodromie
[57] “Construction des représentations
[58] “Mazur's conjecture on higher Heegner points”, Invent. Math. 148 (2002), p. 495-523. | MR | Zbl
-
[59] “Integration on
[60] “The anticyclotomic main conjecture for supersingular elliptic curves”, preprint, 2003. | Zbl
& -
[61] “On the
[62] “Formes modulaires et représentations
[63] -, “Valeurs de fonctions
[64] -, “Preuve des conjectures de Tate et de Shafarevitch (d'après G. Faltings)”, in Sém. Bourbaki 1983/84, Astérisque, vol. 121-122, Société Mathématique de France, 1985, exp. no 616, p. 25-41. | Numdam | Zbl
[65] “Values of Abelian
[66] “The Beilinson conjectures” 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, 1991, p. 173-209. | MR | Zbl
& -[67] “Die Zetafunktion einer algebraischen Kurve vom Geschlecte Eins, I-IV”, Gött. Nac. (1953-1957). | MR | Zbl
-[68] “Rational elliptic curves are modular (after Breuil, Conrad, Diamond and Taylor)”, in Sém. Bourbaki 1999/2000, Astérisque, vol. 276, Société Mathématique de France, 2002, exp. no 871, p. 161-188. | Numdam | MR | Zbl
-[69] “Quaternäre quadratische Formen und die Riemannsche Vermutung für die Konguenzzetafunktion”, Archiv der Mat. 5 (1954), p. 355-366. | MR | Zbl
-[70] “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math. 73 (1983), p. 349-366. | MR | Zbl
-[71] -, “Almost étale extensions” 2002, p. 185-270. | Zbl
[72] “Sur certains types de représentations
[73] -, “Représentations
[74] -, “Valeurs spéciales de fonctions
[75] -, “Le corps des périodes
[76] “Autour des conjectures de Bloch et Kato : cohomologie galoisienne et valeurs de fonctions
[77] “The theory of Coleman power series for
[78] -, “Coleman power series for
[79] “Special values of
[80] “On the local behaviour of
[81] “The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), p. 624-663. | Numdam | MR | Zbl
-[82] “On the Birch and Swinnerton-Dyer conjecture”, Invent. Math. 72 (1983), p. 241-265. | MR | Zbl
-
[83] “
[84] “Heegner points and derivatives of
[85] “General Selmer groups and critical values of Hecke
[86] “Sur la cohomologie galoisienne des corps
[87] “Anticyclotomic Main Conjectures”, preprint, 2003. | MR | Zbl
-
[88] “Anti-cyclotomic Katz
[89] -, “On the anticyclotomic main conjecture for CM fields”, Invent. Math. 117 (1994), p. 89-147. | MR | Zbl
[90] “On the Hodge-Tate decomposition in the imperfect residue field case”, J. reine angew. Math. 365 (1986), p. 97-113. | MR | Zbl
-
[91] “Iwasawa theory of Elliptic Curves at Supersingular Primes over
[92] “Derivatives of
[93] “
[94] “On explicit formulas for the norm residue symbol”, J. Math. Soc. Japan 20 (1968), p. 151-164. | MR | Zbl
-
[95] “A non vanishing theorem for zeta functions of
[96] “The explicit reciprocity law and the cohomology of Fontaine-Messing”, Bull. Soc. math. France 119 (1991), p. 397-441. | Numdam | MR | Zbl
-
[97] -, “Lectures on the approach to Iwasawa theory for Hasse-Weil
[98] -, “Euler systems, Iwasawa theory and Selmer groups”, Kodai Math. J. 22 (1999), p. 313-372. | MR | Zbl
[99] -, “Generalized explicit reciprocity laws”, in Algebraic number theory (Hapcheon/Saga, 1996), Adv. Stud. Contemp. Math. (Pusan), vol. 1, 1999, p. 57-126. | MR | Zbl
[100] -, “Hodge theory and values of zeta functions of modular forms” | Numdam | Zbl
[101] “Local Iwasawa theory of Perrin-Riou and syntomic complexes”, preprint, 1996.
, & -[102] -, Cours au centre Émile Borel, premier semestre 1997.
[103] “Overconvergent modular forms and the Fontaine-Mazur conjecture”, Invent. Math. 153 (2003), p. 373-454. | MR | Zbl
-[104] “Iwasawa theory for elliptic curves at supersingular primes”, Invent. Math. 152 (2003), p. 1-36. | MR | Zbl
-[105] “Euler systems”, in The Grothendieck Festschrift, vol. 2, Progress in Math., vol. 87, Birkhäuser, 1990, p. 436-483. | MR | Zbl
-[106] “Units in the modular function fields II”, Math. Ann. 218 (1975), p. 175-189. | MR | Zbl
& -[107] “On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I”, Invent. Math. 149 (2002), p. 195-224. | MR | Zbl
-[108] “Sur la conjecture de Birch-Swinnerton-Dyer (d'après J. Coates et A. Wiles)”, in Sém. Bourbaki 1976/77, Lect. Notes in Math., vol. 677, Springer, 1978, exp. no 503, p. 189-200. | Numdam | MR | Zbl
-[109] -, “Les formes bilinéaires de Néron et Tate”, in Sém. Bourbaki 1963/64, Société Mathématique de France, 1995, exp. no 274, rééd. Sém Bourbaki 1948-1968, vol. 8. | Numdam | Zbl
[110] “Periods of cusp forms, and
[111] “Rational points of abelian varieties in towers of number fields”, Invent. Math. 18 (1972), p. 183-266. | MR | Zbl
-[112] -, “Modular curves and arithmetic”, in Proceedings of the International Congress of Mathematicians (Warsaw, 1983), PWN, Warsaw, 1984, p. 185-211. | MR
[113] -, “On monodromy invariants occuring in global arithmetic, and Fontaine's theory”, Contemp. Math. 165 (1994), p. 1-20. | MR
[114] “Elliptic curves and class field theory”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, p. 185-195. | MR | Zbl
& -[115] -, Kolyvagin systems, Mem. Amer. Math. Soc., vol. 168, American Mathematical Society, 2004. | MR
[116] “Arithmetic of Weil curves”, Invent. Math. 25 (1974), p. 1-61. | MR | Zbl
& -[117] “Canonical height pairings via biextensions”, in Arithmetic and Geometry : Papers dedicated to I.R. Shafarevich, Progress in Math., vol. 35, Birkhäuser, 1983, p. 195-238. | MR | Zbl
& -
[118] -, “The
[119] “On
[120] “Représentations galoisiennes, différentielles de Kähler et “conjectures principales””, Publ. Math. Inst. Hautes Études Sci. 71 (1990), p. 65-103. | Numdam | MR | Zbl
& -
[121] “Class fields of abelian extensions of
[122] “Formules explicites et minorations de conducteurs de variétés algébriques”, Comp. Math. 58 (1986), p. 209-232. | Numdam | MR | Zbl
-[123] “Kolyvagin's method for Chow groups of Kuga-Sato varieties”, Invent. Math. 107 (1992), p. 99-125. | MR | Zbl
-
[124] -, “On
[125] -, “On the
[126] -, “On the parity of ranks of Selmer groups II”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), p. 99-104. | MR | Zbl
[127] “Quasi-fonctions et hauteurs sur les variétés abéliennes”, Ann. of Math. 82 (1965), p. 249-331. | MR | Zbl
-
[128] -, “Fonctions thêta
[129] “Nombres de classes des corps quadratiques imaginaires”, in Sém. Bourbaki 1983/84, Astérisque, vol. 121-122, Société Mathématique de France, 1985, exp. no 631, p. 309-323. | Numdam | MR | Zbl
-[130] -, “Travaux de Wiles (et Taylor,...). II”, in Sém. Bourbaki 1994/95, Astérisque, vol. 237, Société Mathématique de France, 1996, exp. no 804, p. 333-355. | Numdam | MR
[131] “A new method of constructing
[132] -, “Two variable
[133] “Hauteurs
[134] -, “Points de Heegner et dérivées de fonctions
[135] -, “Travaux de Kolyvagin et Rubin”, in Sém. Bourbaki 1989/90, Astérisque, vol. 189-190, Société Mathématique de France, 1990, exp. no 717, p. 69-106. | Numdam | MR
[136] -, “Théorie d’Iwasawa et hauteurs
[137] -, “Fonctions
[138] -, “Théorie d’Iwasawa des représentations
[139] -, Fonctions L
[140] -, “Systèmes d’Euler et représentations
[141] -, “Représentations
[142] -, “Arithmétique des courbes elliptiques à réduction supersingulière en
[143] -, Théorie d’Iwasawa des représentations
[144] -, “Quelques remarques sur la théorie d'Iwasawa des courbes elliptiques”, in Number theory for the millennium, III (Urbana, IL, 2000), 2002, p. 119-147. | Zbl
[145] “On the
[146] “The main conjecture for CM elliptic curves at supersingular primes”, Ann. of Math. 159 (2004), p. 447-464. | MR | Zbl
& -
[147] “The “missing”
[148] “Galois representations attached to modular forms”, Invent. Math. 28 (1975), p. 245-275. | MR | Zbl
-
[149] -, “A modular construction of unramified extensions of
[150] -, “Galois representations attached to modular forms II”, Glasgow Math. J. 27 (1985), p. 185-194. | MR | Zbl
[151] “On
[152] “Elliptic curves and
[153] -, “Local units, elliptic units, Heegner points, and elliptic curves”, Invent. Math. 88 (1987), p. 405-422. | MR | Zbl
[154] -, “Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication”, Invent. Math. 89 (1987), p. 527-560. | MR | Zbl
[155] -, “The “main conjectures” of Iwasawa theory for imaginary quadratic fields”, Invent. Math. 103 (1991), p. 25-68. | MR | Zbl
[156] -, Euler systems, Ann. of Math. Studies, vol. 147, Princeton Univ. Press, 2000.
[157] “
[158] “
[159] “Motives for modular forms”, Invent. Math. 100 (1990), p. 419-430. | MR | Zbl
-
[160] -, “Remarks on special values of
[161] -, “An introduction to Kato's Euler systems”, in Galois representations in arithmetic algebraic geometry, Cambridge University Press, 1998, p. 379-460. | MR | Zbl
[162] -, “Higher regulators and special values of
[163] -, “Zeta elements for higher weight modular forms”, en préparation.
[164] Abelian
[165] -, “Formes modulaires et fonctions zêta
[166] -, “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math. 15 (1972), p. 259-331. | MR | Zbl
[167] -, “Travaux de Wiles (et Taylor,...). I”, in Sém. Bourbaki 1994/95, Astérisque, vol. 237, Société Mathématique de France, 1996, exp. no 803, p. 319-332 | Numdam | MR
[168] -, lettre du 13/11/59, in Correspondance Grothendieck-Serre, Documents Mathématiques, vol. 2 Société Mathématique de France, 2001. | Zbl
[169] “Correspondances modulaires et les fonctions
[170] -, “Sur les intégrales attachées aux formes automorphes”, J. Math. Soc. Japan 11 (1959), p. 291-311. | MR | Zbl
[171] -, Introduction to the arithmetic theory of automorphic functions, Kan Memorial Lectures 1, vol. 11, Math. Soc. of Japan, 1971. | Zbl
[172] -, “On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields”, Nagoya Math. J. 43 (1971), p. 199-208. | MR | Zbl
[173] -, “On the factors of the jacobian variety of a modular function field”, J. Math. Soc. Japan 25 (1973), p. 523-544. | MR | Zbl
[174] -, “The special values of the zeta functions associated with cusp forms”, Comm. Pure Appl. Math. 29 (1976), p. 783-804. | MR | Zbl
[175] “Sur les déformations
[176] -, en préparation.
[177] “Régulateurs”, in Sém. Bourbaki 1984/85, Astérisque, vol. 133-134, Société Mathématique de France, 1986, exp. no 644, p. 237-253. | Numdam | MR | Zbl
-
[178] -, “Éléments cyclotomiques en
[179] “Coleman’s
[180] -, Cours au centre Émile Borel, premier semestre 2000.
[181] “
[182] -, “A review of non-Archimedean elliptic functions”, in Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995, p. 162-184. | MR | Zbl
[183] -, “On the conjectures of Birch and Swinnerton-Dyer and a geometric analog”, in Sém. Bourbaki 1965/66, Société Mathématique de France, 1995, exp. no 306, rééd. Sém. Bourbaki 1948-1968, vol. 9. | Numdam | MR | Zbl
[184] “On the ideal class group of real abelian number fields”, Ann. of Math. 128 (1988), p. 1-18. | MR | Zbl
-[185] “Sur la conjecture principale anticyclotomique”, Duke Math. J. 59 (1989), p. 629-673. | MR | Zbl
-
[186] “
[187] -, “Semi-stable conjecture of Fontaine-Jannsen : a survey” 2002, p. 323-370. | Numdam | MR | Zbl
[188] “Uniform distribution of Heegner points”, Invent. Math. 148 (2002), p. 1-46. | MR | Zbl
-[189] “Non-archimedian measures connected with Dirichlet series”, Math. USSR-Sb. 28 (1976), p. 216-228. | Zbl
-[190] “Sur la nature arithmétique des valeurs de fonctions modulaires”, in Sém. Bourbaki 1996/97, Astérisque, vol. 245, Société Mathématique de France, 1997, exp. no 824, p. 105-140. | Numdam | MR | Zbl
-[191] Elliptic functions according to Eisenstein and Kronecker, Erg. der Math., vol. 88, Springer-Verlag, 1976. | MR | Zbl
-[192] “Higher explicit reciprocity laws”, Ann. of Math. 107 (1978), p. 235-254. | MR | Zbl
-[193] -, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. 141 (1995), p. 443-551. | MR | Zbl
[194] “