Operads and chain rules for the calculus of functors
Astérisque, no. 338 (2011) , 168 p.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez le site de la revue.
@book{AST_2011__338__1_0,
     author = {Arone, Greg and Ching, Michael},
     title = {Operads and chain rules for the calculus of functors},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {338},
     year = {2011},
     zbl = {1239.55004},
     mrnumber = {2840569},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2011__338__1_0/}
}
Arone, Greg; Ching, Michael. Operads and chain rules for the calculus of functors. Astérisque, no. 338 (2011), 168 p. http://numdam.org/item/AST_2011__338__1_0/

[1] G. Arone - "A generalization of Snaith-type filtration", Trans. Amer. Math. Soc. 351 (1999), p. 1123-1150. | Article | MR 1638238 | Zbl 0945.55011

[2] G. Arone, "The Weiss derivatives of BO- and BU-", Topology 41 (2002), p. 451-481. | MR 1910037 | Zbl 1006.55009

[3] G. Arone, "Derivatives of the embedding functor II : the unstable case", in preparation.

[4] G. Arone & M. Kankaanrinta - "A functorial model for iterated Snaith splitting with applications to calculus of functors", Fields Inst. Commun. 19 (1998), p. 1-30. | MR 1622334 | Zbl 0908.55007

[5] G. Arone & M. Mahowald - "The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres", Invent. Math. 135 (1999), p. 743-788. | Article | MR 1669268 | Zbl 0997.55016

[6] M. Basterra & M. A. Mandell - "Homology and cohomology of E ring spectra", Math. Z. 249 (2005), p. 903-944. | Article | MR 2126222 | Zbl 1071.55006

[7] C. Berger & I. Moerdijk - "Axiomatic homotopy theory for operads", Comment. Math. Helv. 78 (2003), p. 805-831. | Article | MR 2016697 | Zbl 1041.18011

[8] A. K. Bousfield & D. M. Kan - Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer, 1972. | MR 365573 | Zbl 0259.55004

[9] M. Ching - "Bar constructions for topological operads and the Goodwillie derivatives of the identity", Geom. Topol. 9 (2005), p. 833-933. | Article | EuDML 129552 | MR 2140994 | Zbl 1153.55006

[10] M. Ching, "A chain rule for Goodwillie derivatives of functors from spectra to spectra", Trans. Amer. Math. Soc. 362 (2010), p. 399-426. | Article | MR 2550157 | Zbl 1189.55003

[11] M. Ching, "A note on the composition product of symmetric sequences in a symmetric monoidal category", arXiv:math.CT/0510490. | Zbl 1266.18015

[12] J. D. Christensen & D. C. Isaksen - "Duality and pro-spectra", Algebr. Geom. Topol. 4 (2004), p. 781-812. | Article | EuDML 124133 | MR 2100680 | Zbl 1054.55010

[13] A. D. Elmendorf, I. Kriz, M. A. Mandell & J. P. May - Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, Amer. Math. Soc., 1997. | MR 1417719 | Zbl 0894.55001

[14] V. Ginzburg & M. Kapranov - "Koszul duality for operads", Duke Math. J. 76 (1994), p. 203-272. | Article | MR 1301191 | Zbl 0855.18006

[15] P. G. Goerss & J. F. Jardine - Simplicial homotopy theory, Progress in Math., vol. 174, Birkhäuser, 1999. | MR 1711612 | Zbl 0949.55001

[16] T. G. Goodwillie - "Calculus. I. The first derivative of pseudoisotopy theory", K-Theory 4 (1990), p. 1-27. | Article | MR 1076523 | Zbl 0741.57021

[17] T. G. Goodwillie, "Calculus. II. Analytic functors", K-Theory 5 (1991/92), p. 295-332. | Article | MR 1162445 | Zbl 0776.55008

[18] T. G. Goodwillie, "Calculus. III. Taylor series", Geom. Topol. 7 (2003), p. 645-711. | Article | EuDML 124908 | MR 2026544 | Zbl 1067.55006

[19] J. P. C. Greenlees & J. P. May - "Generalized Tate cohomology", Mem. Amer. Math. Soc. 113 (1995). | MR 1230773 | Zbl 0876.55003

[20] J. E. Harper - "Homotopy theory of modules over operads in symmetric spectra", Algebr. Geom. Topol. 9 (2009), p. 1637-1680. | Article | MR 2539191 | Zbl 1235.55004

[21] V. Hinich - "Homological algebra of homotopy algebras", Comm. Algebra 25 (1997), p. 3291-3323. | Article | MR 1465117 | Zbl 0894.18008

[22] P. S. Hirschhorn - Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, Amer. Math. Soc. 2003. | MR 1944041 | Zbl 1017.55001

[23] M. Hovey - Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc. 1999. | MR 1650134 | Zbl 0909.55001

[24] D. C. Isaksen - "Calculating limits and colimits in pro-categories", Fund. Math. 175 (2002), p. 175-194. | Article | EuDML 283375 | MR 1969635 | Zbl 1039.18002

[25] W. P. Johnson - "The curious history of Faa di Bruno's formula", Amer. Math. Monthly 109 (2002), p. 217-234. | MR 1903577 | Zbl 1024.01010

[26] G. M. Kelly - "Basic concepts of enriched category theory", Repr. Theory Appl. Categ. 10 (2005). | MR 2177301 | Zbl 1086.18001

[27] J. R. Klein & J. Rognes - "A chain rule in the calculus of homotopy functors", Geom. Topol. 6 (2002), p. 853-887. | Article | EuDML 124856 | MR 1943383 | Zbl 1066.55009

[28] T. A. Kro - "Model structure on operads in orthogonal spectra", Homology, Homotopy Appl. 9 (2007), p. 397-412. | Article | MR 2366955

[29] N. J. Kuhn - "Tate cohomology and periodic localization of polynomial functors", Invent Math. 157 (2004), p. 345-370. | Article | MR 2076926 | Zbl 1069.55007

[30] N. J. Kuhn, "Goodwillie towers and chromatic homotopy: an overview", in Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, p. 245-279. | MR 2402789 | Zbl 1105.55002

[31] L. G. J. Lewis - "Is there a convenient category of spectra?", J. Pure Appl. Algebra 73 (1991), p. 233-246. | Article | MR 1124786 | Zbl 0727.55005

[32] L. G. J. Lewis, J. P. May, M. Steinberger & J. E. Mcclure - Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer, 1986. | MR 866482 | Zbl 0611.55001

[33] J. Lurie - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton Univ. Press, 2009. | MR 2522659 | Zbl 1175.18001

[34] J. Lurie, ",2-categories and the Goodwillie calculus I", preprint arXiv:0905.0462.

[35] S. Maclane - Categories for the working mathematician, Graduate Texts in Math., vol. 5, Springer, 1971. | MR 354798 | Zbl 0232.18001

[36] M. A. Mandell, J. P. May, S. Schwede & B. E. Shipley - "Model categories of diagram spectra", Proc. London Math. Soc. 82 (2001), p. 441-512. | Article | MR 1806878 | Zbl 1017.55004

[37] M. Markl, S. Shnider & J. Stasheff - Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. | MR 1898414 | Zbl 1017.18001

[38] J. P. May - The geometry of iterated loop spaces, Lectures Notes in Mathematics, vol. 271, Springer, 1972. | MR 420610 | Zbl 0244.55009

[39] J. P. May & J. Sigurdsson - Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, Amer. Math. Soc., 2006. | Article | MR 2271789 | Zbl 1119.55001

[40] R. Mccarthy - "Dual calculus for functors to spectra", in Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer. Math. Soc., 2001, p. 183-215. | Article | MR 1831354 | Zbl 0996.19005

[41] C. W. Rezk - "Spaces of algebra structures and cohomology of operads", Ph.D. Thesis, Massachusetts Institute of Technology, 1996. | MR 2716655

[42] S. Schwede - "S-modules and symmetric spectra", Math. Ann. 319 (2001), p. 517-532. | Article | MR 1819881 | Zbl 0972.55005

[43] S. Schwede & B. E. Shipley - "Algebras and modules in monoidal model categories", Proc. London Math. Soc. 80 (2000), p. 491-511. | Article | MR 1734325 | Zbl 1026.18004

[44] S. Schwede & B. E. Shipley, "Stable model categories are categories of modules", Topology 42 (2003), p. 103-153. | Article | MR 1928647 | Zbl 1013.55005

[45] Spitzweck - "Operads, algebras and modules in general model categories", preprint arXiv.math/0101102. | Zbl 1103.18300

[46] M. Weiss - "Orthogonal calculus", Trans. Amer. Math. Soc. 347 (1995), p. 3743-3796. | Article | MR 1321590 | Zbl 0866.55020