@book{AST_2012__345__R1_0, author = {Kashiwara, Masaki and Schapira, Pierre}, title = {Deformation quantization modules}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {345}, year = {2012}, mrnumber = {3012169}, zbl = {1260.32001}, language = {en}, url = {http://archive.numdam.org/item/AST_2012__345__R1_0/} }
Kashiwara, Masaki; Schapira, Pierre. Deformation quantization modules. Astérisque, no. 345 (2012), 159 p. http://numdam.org/item/AST_2012__345__R1_0/
[1] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Math., vol. 270, Springer, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. | Zbl
, (eds.) -[2] Deformation theory and quantization. I. Deformations of symplectic structures", Ann. Physics 111 (1978), p. 61-110. | MR | Zbl | DOI
, , , et - "[3] Non-commutative tori and Fourier-Mukai duality", Compos. Math. 143 (2007), p. 423-475. | MR | Zbl | DOI
, et - "[4] Quantization", Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), p. 1116-1175. | MR | Zbl
- "[5] General concept of quantization", Comm. Math. Phys. 40 (1975), p. 153-174. | MR | Zbl | DOI
, "[6] A relation between Hochschild homology and cohomology for Gorenstein rings", Proc. Amer. Math. Soc. 126 (1998), p. 1345-1348. | MR | Zbl | DOI
- "[7] On global deformation quantization in the algebraic case", J. Algebra 315 (2007), p. 326-395. | MR | Zbl | DOI
- "[8] Fedosov quantization in algebraic context", Mosc. Math. J. 4 (2004), p. 559-592, 782. | MR | Zbl | DOI
et - "[9] Complex star algebras", Math. Phys. Anal. Geom. 2 (1999), p. 113-139. | MR | Zbl | DOI
- "
[10] On the classification of
[11] Algebraic index theorem for symplectic deformations of gerbes", in Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., 2011, p. 23-38. | MR | Zbl | DOI
, , et - "[12] Deformation quantization of gerbes", Adv. Math. 214 (2007), p. 230-266. | MR | Zbl | DOI
, , et - "[13] Chern character for twisted complexes", in Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, 2008, p. 309-324. | MR | Zbl
, , et , "[14] Riemann-Roch theorems via deformation quantization. I, II", Adv. Math. 167 (2002), p. 1-25, 26-73. | MR | Zbl | DOI
, et - "
[15] The homology of algebras of pseudodifferential symbols and the noncommutative residue",
[16] Weak quantization of Poisson structures", J. Geom. Phys. 61 (2011), p. 1401-1414. | MR | Zbl | DOI
et - "[17] The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism", Adv. Math. 194 (2005), p. 34-66. | MR | Zbl | DOI
- "[18] The Mukai pairing. I. A categorical approach", New York J. Math. 16 (2010), p. 61-98. | MR | Zbl | EuDML
et - "
[19] GAGA for
[20] Regular holonomic
[21] Deformation quantization of complex involutive submanifolds", in Noncommutative geometry and physics, World Sci. Publ., Hackensack, NJ, 2005, p. 127-137. | MR
et - "[22] Quantization of complex Lagrangian submanifolds", Adv. Math. 213 (2007), p. 358-379. | MR | Zbl | DOI
et - "[23] The Van den Bergh duality and the modular symmetry of a Poisson variety", Selecta Math. (N.S.) 14 (2009), p. 199-228. | MR | Zbl | DOI
- "[24] An algebraic index theorem for Poisson manifolds", J. reine angew. Math. 633 (2009), p. 77-113. | MR | Zbl
et - "[25] Deformation quantization and index theory, Mathematical Topics, vol. 9, Akademie Verlag, 1996. | MR | Zbl
-[26] Riemann-Roch-Hirzebruch theorem and topological quantum mechanics", preprint arXiv:math.QA/0401400.
, et - "[27] Riemann-Roch theorem and Lie algebra cohomology. I", in Proceedings of the Winter School on Geometry and Physics (Srní, 1988), vol. 21, 1989, p. 15-52. | MR | Zbl | EuDML
et - "[28] The integrability of the characteristic variety", Amer. J. Math. 103 (1981), p. 445-468. | MR | Zbl | DOI
- "[29] Cohomologie non abélienne, Die Grund. Math. Wiss., vol. 179, Springer, 1971. | MR | Zbl
-[30] Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, 1958. | MR | Zbl
-[31] Ein Theorem der analytischen Garbentheorie und die Modulräume complexer Strukturen", Publ. IHÉS 5 (1960). | MR | EuDML | Numdam
- "
[32] On a conjecture of Kashiwara relating Chern and Euler classes of
[33] Éléments de Géométrie Algébrique III, Étude cohomologique des faisceaux cohérents I", Publ. IHÉS 11 (1961). | MR | Numdam
- "[34] Espaces analytiques relatifs et théorème de finitude", Math. Ann. 205 (1973), p. 13-54. | MR | Zbl | EuDML | DOI
- "[35] Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 2006. | Zbl | MR
-[36] On the maximally overdetermined system of linear differential equations. I", Publ. Res. Inst. Math. Sci. 10 (1974/75), p. 563-579. | MR | Zbl | DOI
- "[37] Quantization of contact manifolds", Publ. Res. Inst. Math. Sci. 32 (1996), p. 1-7. | MR | Zbl | DOI
, "
[38]
[39] Letter to Pierre Schapira, 18/11/1991.
,[40] Systems of differential equations with regular singularities and their boundary value problems", Ann. Math. 106 (1977), p. 145-200. | MR | Zbl | DOI
et - "[41] Sheaves on manifolds, Grund. Math. Wiss., vol. 292, Springer, 1990. | MR | Zbl
et -[42] Moderate and formal cohomology associated with constructible sheaves", Mém. Soc. Math. France (N.S.) 64 (1996). | MR | Zbl | EuDML | Numdam
et , "[43] Categories and sheaves, Grund. Math. Wiss., vol. 332, Springer, 2006. | MR | Zbl
et ,[44] Constructibility and duality for simple holonomic modules on complex symplectic manifolds", Amer. J. Math. 130 (2008), p. 207-237. | MR | Zbl | DOI
et , "[45] Modules over deformation quantization algebroids : an overview", Lett. Math. Phys. 88 (2009), p. 79-99. | MR | Zbl | DOI
et , "[46] Deformation quantization modules", preprint arXiv: 1003.3304. | MR | Zbl | Numdam
et ,"[47] Deformation quantization of algebraic varieties", Lett. Math. Phys. 56 (2001), p. 271-294. | MR | Zbl | DOI
- "[48] Deformation quantization of Poisson manifolds", Lett. Math. Phys. 66 (2003), p. 157-216. | MR | Zbl | DOI
, "
[49] Sur la catégorie dérivée des
[50] The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem", J. Lond. Math. Soc. 79 (2009), p. 129-143. | MR | Zbl | DOI
- "[51] The additivity of traces in triangulated categories", Adv. Math. 163 (2001), p. 34-73. | MR | Zbl | DOI
- "[52] Classification of deformation quantization algebroids on complex symplectic manifolds", Publ. Res. Inst. Math. Sci. 44 (2008), p. 725-748. | MR | Zbl | DOI
- "[53] Stacks of quantization-deformation modules on complex symplectic manifolds", Int. Math. Res. Not. 2004 (2004), p. 2637-2664. | MR | Zbl | DOI
et - "[54] On a question of Quillen", Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 45(93) (2002), p. 209-212. | MR | Zbl
- "[55] The relative Riemann-Roch theorem from Hochschild homology", New York J. Math. 14 (2008), p. 643-717. | MR | Zbl | EuDML
- "[56] Microfunctions and pseudo-differential equations", in Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971 ; dedicated to the memory of André Martineau), Springer, 1973, p. 265-529. Lecture Notes in Math., Vol. 287. | MR | Zbl
, et - "[57] Microdifferential systems in the complex domain, Grund. Math. Wiss., vol. 269, Springer, 1985. | MR | Zbl
-[58] Elliptic pairs. II. Euler class and relative index theorem", Astérisque 224 (1994), p. 61-98. | MR | Zbl | Numdam
et - "[59] Hirzebruch-Riemann-Roch theorem for DG algebras", preprint arXiv:math/0710.1937. | Zbl
- "[60] Néron-Popescu desingularization", in Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., vol. 2, Int. Press, Cambridge, MA, 1998, p. 135-192. | MR | Zbl
- "[61] Cyclic homology of pseudodifferential operators and noncommutative Euler class", C. R. Acad. Sci. Paris Ser. I Math. 306 (1988), p. 321-325. | MR | Zbl
- "[62] The continuous Hochschild cochain complex of a scheme", Canad. J. Math. 54 (2002), p. 1319-1337. | MR | Zbl | DOI
- "[63] Deformation quantization in algebraic geometry", Adv. Math. 198 (2005), p. 383-432 | MR | Zbl | DOI
, "Deformation quantization in algebraic geometry", erratum : Adv. Math. 217 (2008), 2897-2906. | MR | Zbl
, "[64] Twisted deformation quantization of algebraic varieties", preprint arXiv:math.AG/0905.0488. | MR | Zbl | DOI
, "