@incollection{AST_2012__348__339_0, author = {Houdayer, Cyril}, title = {Invariant percolation and measured theory of nonamenable groups [after {Gaboriau-Lyons,} {Ioana,} {Epstein]}}, booktitle = {S\'eminaire Bourbaki Volume 2010/2011 Expos\'es 1027-1042. Avec table par noms d'auteurs de 1948/49 \`a 2009/10.}, series = {Ast\'erisque}, note = {talk:1039}, pages = {339--374}, publisher = {Soci\'et\'e math\'ematique de France}, number = {348}, year = {2012}, mrnumber = {3051202}, zbl = {1267.37005}, language = {en}, url = {http://archive.numdam.org/item/AST_2012__348__339_0/} }
TY - CHAP AU - Houdayer, Cyril TI - Invariant percolation and measured theory of nonamenable groups [after Gaboriau-Lyons, Ioana, Epstein] BT - Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10. AU - Collectif T3 - Astérisque N1 - talk:1039 PY - 2012 SP - 339 EP - 374 IS - 348 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2012__348__339_0/ LA - en ID - AST_2012__348__339_0 ER -
%0 Book Section %A Houdayer, Cyril %T Invariant percolation and measured theory of nonamenable groups [after Gaboriau-Lyons, Ioana, Epstein] %B Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10. %A Collectif %S Astérisque %Z talk:1039 %D 2012 %P 339-374 %N 348 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2012__348__339_0/ %G en %F AST_2012__348__339_0
Houdayer, Cyril. Invariant percolation and measured theory of nonamenable groups [after Gaboriau-Lyons, Ioana, Epstein], dans Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10., Astérisque, no. 348 (2012), Exposé no. 1039, 36 p. http://archive.numdam.org/item/AST_2012__348__339_0/
[1] Random walks on free periodic groups", Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), p. 1139-1149, 1343. | MR | Zbl
- "[2] Amenable correspondences and approximation properties for von Neumann algebras", Pacific J. Math. 171 (1995), p. 309-341. | DOI | MR | Zbl
- "[3] Group-invariant percolation on graphs", Geom. Fund. Anal. 9 (1999), p. 29-66. | DOI | MR | Zbl
, , & - "[4] Percolation beyond , many questions and a few answers", Electron. Comm. Probab. 1 (1996), p. 71-82. | DOI | EuDML | MR | Zbl
& - "[5] Hyperfinite and actions for nonamenable groups", J. Funct. Anal. 40 (1981), p. 30-44. | DOI | MR | Zbl
& - "[6] C*-algebras and finite-dimensional approximations, Graduate Studies in Math., vol. 88, Amer. Math. Soc., 2008. | MR | Zbl
& -[7] Kazhdan constants for ", J. reine angew. Math. 413 (1991), p. 36-67. | EuDML | MR | Zbl
- "[8] Ergodic subequivalence relations induced by a Bernoulli action", Geom. Funct. Anal 20 (2010), p. 53-67. | DOI | MR | Zbl
& - "[9] Ann. of Math. 104 (1976), p. 73-115. | DOI | MR | Zbl
- "Classification of injective factors. Cases ",[10] A factor of type with countable fundamental group", J. Operator Theory 4 (1980), p. 151-153. | MR | Zbl
, "[11] An amenable equivalence relation is generated by a single transformation", Ergodic Theory Dynam. Systems 1 (1981), p. 431-450. | DOI | MR | Zbl
, & - "[12] Property T and asymptotically invariant sequences", Israel J. Math. 37 (1980), p. 209-210. | DOI | MR | Zbl
& - "[13] On groups of measure preserving transformation. I", Amer. J. Math. 81 (1959), p. 119-159. | DOI | MR | Zbl
- "[14] On groups of measure preserving transformations. II", Amer. J. Math. 85 (1963), p. 551-576. | DOI | MR | Zbl
, "[15] Orbit inequivalent actions of non-amenable groups", preprint arXiv:0707.4215.
- "[16] Ergodic equivalence relations, cohomology, and von Neumann algebras. I", Trans. Amer. Math. Soc. 234 (1977), p. 289-324. | DOI | MR | Zbl
& - "[17] Ergodic equivalence relations, cohomology, and von Neumann algebras. II", Trans. Amer. Math. Soc. 234 (1977), p. 325-359. | DOI | MR | Zbl
& , "[18] Coût des relations d'équivalence et des groupes", Invent. Math. 139 (2000), p. 41-98. | DOI | MR | Zbl
- "[19] Examples of groups that are measure equivalent to the free group", Ergodic Theory Dynam. Systems 25 (2005), p. 1809-1827. | DOI | MR | Zbl
, "[20] Invariant percolation and harmonic Dirichlet functions", Geom. Funct. Anal. 15 (2005), p. 1004-1051. | DOI | MR | Zbl
, "[21] Orbit equivalence and measured group theory", in Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, 2010, p. 1501-1527. | MR | Zbl
, "[22] A measurable-group-theoretic solution to von Neumann's problem", Invent. Math. 177 (2009), p. 533-540. | DOI | MR | Zbl
& - "[23] An uncountable family of nonorbit equivalent actions of ", J. Amer. Math. Soc. 18 (2005), p. 547-559. | DOI | MR | Zbl
& - "[24] Fundamental groups for ergodic actions and actions with unit fundamental groups", Publ. Res. Inst. Math. Sci. 24 (1988), p. 821-847. | DOI | MR | Zbl
& - "[25] Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously", Probab. Theory Related Fields 113 (1999), p. 273-285. | DOI | MR | Zbl
& - "[26] A converse to Dye's theorem", Trans. Amer. Math. Soc. 357 (2005), p. 3083-3103. | DOI | MR | Zbl
- "[27] A lemma for cost attained", Ann. Pure Appl. Logic 143 (2006), p. 87-102. | DOI | MR | Zbl
, "[28] A relative version of Connes' invariant and existence of orbit inequivalent actions", Ergodic Theory Dynam. Systems 27 (2007), p. 1199-1213. | DOI | MR | Zbl
- "[29] Non-orbit equivalent actions of ", Ann. Sci. Éc. Norm. Supér. 42 (2009), p. 675-696. | DOI | EuDML | Numdam | MR | Zbl
, "[30] Orbit inequivalent actions for groups containing a copy of ", Invent. Math. 185 (2011), p. 55-73. | DOI | MR | Zbl
, "[31] Subequivalence relations and positive-definite functions", Groups Geom. Dyn. 3 (2009), p. 579-625. | DOI | MR | Zbl
, & - "[32] A class of superrigid group von Neumann algebras", preprint arXiv:1007.1412. | DOI | MR | Zbl
, & - "[33] Connection of the dual space of a group with the structure of its subgroups", Fund. Anal. Appl. 1 (1967), p. 63-65. | DOI | MR | Zbl
- "[34] Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, Amer. Math. Soc., 2010. | DOI | MR | Zbl
-[35] Topics in orbit equivalence, Lecture Notes in Math., vol. 1852, Springer, 2004. | MR | Zbl
& -[36] Full Banach mean values on countable groups", Math. Scand. 7 (1959), p. 146-156. | DOI | EuDML | MR | Zbl
- "[37] Orbit equivalence rigidity for ergodic actions of the mapping class group", Geom. Dedicata 131 (2008), p. 99-109. | DOI | MR | Zbl
- "[38] On the cost of generating an equivalence relation", Ergodic Theory Dynam. Systems 15 (1995), p. 1173-1181. | DOI | MR | Zbl
- "[39] Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics", J. Math. Phys. 41 (2000), p. 1099-1126. | DOI | Zbl
- "[40] Probability on trees and networks", in preparation http://mypage.iu.edu/˜rdlyons/. | DOI | Zbl
& - "[41] Minimal spanning forests", Ann. Probab. 34 (2006), p. 1665-1692. | DOI | Zbl
, & - "[42] Indistinguishability of percolation clusters", Ann. Probab. 27 (1999), p. 1809-1836. | DOI | Zbl
& - "[43] Finitely-additive invariant measures on Euclidean spaces", Ergodic Theory Dynam. Systems 2 (1982), p. 383-396. | DOI | Zbl
- "[44] Isoperimetric inequalities, growth, and the spectrum of graphs", Linear Algebra Appl. 103 (1988), p. 119-131. | DOI | Zbl
- "[45] Orbit equivalence rigidity and bounded cohomology", Ann. of Math. 164 (2006), p. 825-878. | DOI | Zbl
& - "[46] On rings of operators. IV", Ann. of Math. 44 (1943), p. 716-808. | DOI | Zbl
& - "[47] On rings of operators", Ann. of Math. 37 (1936), p. 116-229. | DOI | JFM | Zbl
& - "[48] Zur allgemeinen Theorie des Maßes", Fundam. Math. 13 (1929), p. 73-116. | DOI | EuDML | JFM
- "[49] Infinite clusters in percolation models", J. Statist. Phys. 26 (1981), p. 613-628. | DOI | Zbl
& - "[50] On the question of the existence of an invariant mean on a group", Uspekhi Mat. Nauk 35 (1980), p. 199-200. | Zbl
- "[51] Non-amenable finitely presented torsion-by-cyclic groups", Publ. Math. IHÉS 96 (2002), p. 43-169. | DOI | EuDML | Numdam | Zbl
& - "[52] Ergodic theory of amenable group actions. I. The Rohlin lemma", Bull. Amer. Math. Soc. (N.S.) 2 (1980), p. 161-164. | DOI | Zbl
& - "[53] A Kurosh-type theorem for type factors", Int. Math. Res. Not. 2006 (2006), Art. ID 97560, 21. | Zbl
- "[54] On non-uniqueness of percolation on nonamenable Cayley graphs", C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), p. 495-500. | DOI | Zbl
& - "[55] On a class of type factors with Betti numbers invariants", Ann. of Math. 163 (2006), p. 809-899. | DOI | Zbl
- "[56] Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions", J. Inst. Math. Jussieu 5 (2006), p. 309-332. | DOI | Zbl
, "[57] Strong rigidity of factors arising from malleable actions of -rigid groups. I", Invent. Math. 165 (2006), p. 369-408. | DOI | Zbl
, "[58] Deformation and rigidity for group actions and von Neumann algebras", in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, p. 445-477. | Zbl
, "[59] On Ozawa's property for free group factors", Int. Math. Res. Not. 2007 (2007), Art. ID rnm036, 10. | Zbl
, "[60] On the superrigidity of malleable actions with spectral gap", J. Amer. Math. Soc. 21 (2008), p. 981-1000. | DOI | Zbl
, "[61] Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups", Adv. Math. 217 (2008), p. 833-872. | DOI | Zbl
& - "[62] Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions", Ergodic Theory Dynam. Systems 1 (1981), p. 223-236. | DOI | Zbl
- "[63] Automorphisms of finite factors", Amer. J. Math. 77 (1955), p. 117-133. | DOI | Zbl
- "[64] An analytic series of irreducible representations of the free group", Ann. Inst. Fourier (Grenoble) 38 (1988), p. 87-110. | DOI | EuDML | Numdam | Zbl
- "[65] Ends in free minimal spanning forests", Ann. Probab. 34 (2006), p. 865-869. | DOI | Zbl
- "[66] Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa)", Séminaire Bourbaki, vol. 2005/2006, exp. n° 961, Astérisque 311 (2007), p. 237-294. | EuDML | Numdam | Zbl
- "[67] Rigidity for von Neumann algebras and their invariants", in Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, 2010, p. 1624-1650. | Zbl
, "[68] Ergodic theory and semisimple groups, Monographs in Math., vol. 81, Birkhäuser, 1984. | Zbl
-