Grandes déviations pour les processus d'apprentissage lent à statistiques discontinues sur une surface
Thèses d'Orsay, no. 429 (1995) , 218 p.
@phdthesis{BJHTUP11_1995__0429__P0_0,
     author = {Nagot, Isabelle},
     title = {Grandes d\'eviations pour les processus d'apprentissage lent \`a statistiques discontinues sur une surface},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
     number = {429},
     year = {1995},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_1995__0429__P0_0/}
}
TY  - BOOK
AU  - Nagot, Isabelle
TI  - Grandes déviations pour les processus d'apprentissage lent à statistiques discontinues sur une surface
T3  - Thèses d'Orsay
PY  - 1995
IS  - 429
PB  - Université de Paris-Sud U.F.R. Scientifique d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_1995__0429__P0_0/
LA  - fr
ID  - BJHTUP11_1995__0429__P0_0
ER  - 
%0 Book
%A Nagot, Isabelle
%T Grandes déviations pour les processus d'apprentissage lent à statistiques discontinues sur une surface
%S Thèses d'Orsay
%D 1995
%N 429
%I Université de Paris-Sud U.F.R. Scientifique d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_1995__0429__P0_0/
%G fr
%F BJHTUP11_1995__0429__P0_0
Nagot, Isabelle. Grandes déviations pour les processus d'apprentissage lent à statistiques discontinues sur une surface. Thèses d'Orsay, no. 429 (1995), 218 p. http://numdam.org/item/BJHTUP11_1995__0429__P0_0/

[AO] R. Anderson et S. Orey. Small random perturbations of dynamical systems with reflecting boundary. Nagoya Math, 5, 60, 189-216 (1976). | MR | Zbl

[Az] R. Azencott. Cours sur les grandes déviations à l'école d'été de St-Flour. Springer-Verlag, Lecture notes in Mathematics, 774, 1-176 (1978). | MR | Zbl

[AR] R. Azencott et G. Ruget. Mélange d'équations différentielles et grands écarts à la loi des grands nombres. Zeitschrift für Wahrscheinlichkeits-theorie und verwandte Gebiete, 38, Springer-Verlag, 1-54 (1977). | MR | Zbl | DOI

[Be] S.H. Benton. The Hamilton-Jacobi equation : a global approach. Academic Press, New York (1977). | Zbl | MR

[Ca] H. Cartan. Formes différentielles, applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces. Coll. Méthodes. Hermann, Paris (1967). | MR | Zbl

[CL] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill Book, New York (1955). | MR | Zbl

[CFM] M. Cottrell, J.C. Fort et G. Malgouyres. Large deviations and rare events in the study of stochastic algorithms. I.E.E.E. Transactions on Automatic Control, Vol AC-28, N°9, September, 907-920 (1983). | MR | Zbl | DOI

[DZ] A. Dembo, O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett Publishers (1992). | Zbl | MR

[DS] J.-D. Deuschel and D. W. Stroock. Large deviations. Academic Press, San Diego, CA (1989). | MR | Zbl

[Du88] P. Dupuis. Large deviations analysis of some recursive algorithms with state dependent noise. The Annals of Probability, Vol. 16, N° 4, 1509-1536 (1988). | MR | Zbl | DOI

[Du92] P. Dupuis. A Numerical Method for a Calculus of Variations Problem with Discontinuous Integrand. In I. Karatzas and D. Ocone, editors, Proceedings of the Rudgers Conference on Applied Stochastic Analysis, Lecture Notes in Control and Information Science, Springer-Verlag, 90-107 (1992). | MR | DOI

[DE] P. Dupuis and R.S. Ellis. Large deviations for Markov processes with discontinuous statistics, II : Random walks. Probab. Theory Relat. Fields, 91, 153-194 (1992). | MR | Zbl | DOI

[DEW] P. Dupuis, R.S. Ellis and Alan Weiss. Large deviations for Markov processes with discontinuous statistics, I : General upper bounds. The Annals of Probability, Vol. 19, N° 3, 1280-1297 (1991). | MR | Zbl

[DIS] P. Dupuis, H. Ishii and H.M. Soner. A viscosity solution approach to the asymptotic analysis of queuing systems. The Annals of Probability, Vol. 18, N° 1, 226-255 (1990). | MR | Zbl

[DK] P. Dupuis, H. Kushner. Stochastic systems with small noise, analysis and simulation ; a phase locked loop examples. Preprint (1985). | MR | Zbl

[FR] W.H. Fleming and R. Rishel. Deterministic and stochastic optimal control. Springer-Verlag, Berlin (1975). | MR | Zbl | DOI

[FW] M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften, 260, Springer-Verlag (1984). | MR | Zbl

[IT] A.D. Ioffe and V.M. Tihomirov. Theory of extremal problems. Studies in Mathematics and its Applications, Vol. 6. North-Holland, Amsterdam, New York (1979). | MR | Zbl

[Ku] H.J. Kushner. Approximation and Weak convergence Methods for Random Processes with Applications to Stochastic System Theory. MIT Press, Cambridge, MA (1984). | MR | Zbl

[Li] P.L. Lions. Generalized solutions of Hamilton-Jacobi equations. Research Notes in Mathematics, 69. Pitman, Boston (1982). | MR | Zbl

[Roc] R.T. Rockafellar. Convex analysis. Princeton University Press, Princeton (1970). | MR | Zbl | DOI

[Rou] A. Rouault. Espérances et majorations pour un processus de branchement spatial markovien. Annales de l'Institut Henri Poincaré, Vol. 23, N°3, 459-497 (1987). | MR | Zbl | Numdam

[RZ] D.E. Rumelhart and D. Zipser. Feature discovery by competitive learning. In : D.E. Rumelhart and J.L. MacClelland, Eds., Parallel Distributed Processing, Chap. 5. MIT Press, Cambridge, MA (1986).

[Va] S.R.S. Varadhan. Large deviations and Applications. S.I.A.M., Philadelphia (1984). | MR | Zbl

[We,1] A.D. Wentzell. Rough limit theorems on large deviations for Markov stochastic processes. I. Theory Probab. Appl., 21, 227-242 (1976).

[We,2] A.D. Wentzell. Rough limit theorems on large deviations for Markov stochastic processes. II. Theory Probab. Appl., 21, 499-512 (1976). | Zbl

[We,3] A.D. Wentzell. Rough limit theorems on large deviations for Markov stochastic processes. III. Theory Probab. Appl., 24, 675-692 (1979). | Zbl

[We,4] A.D. Wentzell. Rough limit theorems on large deviations for Markov stochastic processes. IV. Theory Probab. Appl., 27, 215-534 (1982). | Zbl