@phdthesis{BJHTUP11_2008__0745__A1_0, author = {Adamy, Karine}, title = {Contribution \`a l'\'etude th\'eorique et num\'erique de certains syst\`emes de m\'ecanique des fluides}, series = {Th\`eses d'Orsay}, publisher = {Universite Paris-Sud Facult\'e des Sciences d'Orsay}, number = {745}, year = {2008}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_2008__0745__A1_0/} }
TY - BOOK AU - Adamy, Karine TI - Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides T3 - Thèses d'Orsay PY - 2008 IS - 745 PB - Universite Paris-Sud Faculté des Sciences d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_2008__0745__A1_0/ LA - fr ID - BJHTUP11_2008__0745__A1_0 ER -
%0 Book %A Adamy, Karine %T Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides %S Thèses d'Orsay %D 2008 %N 745 %I Universite Paris-Sud Faculté des Sciences d'Orsay %U http://archive.numdam.org/item/BJHTUP11_2008__0745__A1_0/ %G fr %F BJHTUP11_2008__0745__A1_0
Adamy, Karine. Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides. Thèses d'Orsay, no. 745 (2008), 118 p. http://numdam.org/item/BJHTUP11_2008__0745__A1_0/
[1] Regularity and uniqueness of solutions to the boussinesq system of equations, J. Diff. Eq., 54, 1984. | MR | Zbl | DOI
,[2] Transport of pollutant in shallow water, a two time steps kinetic method, M2 AN Math. Model. Num. Anal., 37, no. 2, 2003. | MR | Zbl | Numdam
, ,[3] Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media I : Derivation and Linear Theory, J. Nonlinear Sci. 12, no. 4, 2002. | MR | Zbl | DOI
, , ,[4] Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media II : The nonlinear theory, Nonlinearity 17,, 2004. | MR | Zbl | DOI
, , ,[5] Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris 73, 1871. | JFM
,[6] Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization Appl. Numer. Math. 23 (4), 1997. | MR | Zbl | DOI
, , ,[7] Incremental unknowns method and compact schemes RAIRO Model. Math. Anal. Num. 32 (1), 1998. | MR | Zbl | Numdam
,[8] Incremental unknowns for solving partial differential equations Numer. Math. 59, 1991. | MR | Zbl | DOI
, ,[9] Incremental unknowns in finite differences : condition number of the matrix SIAM J. Matrix Anal. Appl. 14 (2), 1993. | MR | Zbl | DOI
, ,[10] A dynamical multi-level scheme for the Burgers equation : wavelet and hierarchical finite element J. Sci. Comput. 25 (3), 2005. | MR | Zbl | DOI
, , ,[11] Dynamic multilevel methods and the numerical simulation of turbulence Cambridge University Press, Cambridge, 1999. | MR | Zbl
, , ,[12] Incremental unknowns, multilevel methods and the numerical simulation of turbulence Comput. Methods Appl. Mech. Engrg. 159 (1-2), 1998. | MR | Zbl
, , ,[13] Multilevel schemes for the shallow water equations J. Comput. Phys. 207, 2005. | MR | Zbl | DOI
, , , ,[14] Finite volume discretization and multilevel methods in flow problems, J. Sci. Comput., 25 (1-2), 2005. | MR | Zbl | DOI
, , ,[15] Méthodes de volumes finis et multiniveaux pour les équations de Navier-Stokes, de Burgers et de la chaleur, Thèse de Doctorat.
,[16] Boundary Value Problems for Boussinesq Type Systems, Math. Phys., Anal. Geom. 8, 2005. | MR | Zbl | DOI
, ,[17] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160, 2000. | MR | Zbl
, ,[18] A third-order semi-discrete genuinely multidimensionnal central scheme for hyperbolic conservation laws and related problems Numer. Math. 88, 2001. | MR | Zbl | DOI
, ,[19] Semidiscrete central upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23, no3, 2001. | MR | Zbl | DOI
, , ,[20] Central-upwind schemes for the Saint-Venant system, M2AN, Vol.36, no 3, 2002. | MR | Zbl | Numdam | DOI
, ,[21] Modélisation des ondes de surface et justification mathématique, Ecole d'été Théorie mathématique des ondes non linéaires dispersives, 2005.
,[22] A step toward transparent boundary conditions for meteorological models. Monthly Weather Review, 130 :140-151, 2001. | DOI
.[23] Transparent boundary conditions for the shallow-water equations : testing in a nested environment. Monthly Weather Review, 131 :698-705, 2002. | DOI
.[24] Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, C. R. Acad. Sci. Paris, 73, 1871. | JFM
,[25] Existence of solutions for the Boussinesq system of equations, J. Differential Equations, 42, 1981, no. 3, 325-352. | MR | Zbl | DOI
,[26] Systèmes hyperboliques de lois de conservation, I et II, Diderot, Paris, 1996. | MR | Zbl
,[27] Water waves, the mathematical theory with applications, Wiley, 1985. | Zbl | MR
,[28] Inertial manifolds and multigrid methods SIAM J. Math. Anal., 21 (1), 1990. | MR | Zbl | DOI
,[29] Multilevel methods for the simulation of turbulence. A simple model J. Comput. Phys., 127 (2), 1996. | MR | Zbl | DOI
,[30] Linear and non linear waves, Wiley and Sons Inc., New York, 1999. | MR | Zbl
,[1] Regularity and uniqueness of solutions to the boussinesq system of equations, J. Diff. Eq., 54, 1984. | MR | Zbl | DOI
,[2] Lectures on nonlinear wave motion, Lectures in Applied Mathematics, Vol. 15, Amer. Math. Soc., Providence, R.I., 1974. | MR
,[3] A model for the two-way propagation of water waves in a channel, Math. Proc.Cambridge Philos., Soc. 79, 1976. | MR | Zbl | DOI
, ,[4] An initial and boundary-value problem for a model equation for propagation of long waves, J. Math. Anal Appl., 75, 1980. | MR | Zbl | DOI
, ,[5] Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media I : Derivation and Linear Theory, J. Nonlinear Sci. 12, no. 4, 2002. | MR | Zbl | DOI
, , ,[6] Boussinesq Equations and Other Systems for Small-amplitude Long Waves in Nonlinear Dispersive Media II : The nonlinear theory, Non-linearity 17, 2004.
, , ,[7] The One-dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, 23, 1984. | MR | Zbl
,[8] Linear Operators. Part 1. Pure and Applied Mathematics, Vol. VII, Interscience Publishers, New York
, ,[9] Boundary Value Problems for Boussinesq Type Systems, Math. Phys., Anal. Geom. 8, 2005. | MR | Zbl | DOI
, ,[10] Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl
,[11] Shock Waves and Entropy Contributions to Non-Linear Functionnal Analysis, Academic Press, New York, 1971. | MR | Zbl
,[12] Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991. | MR | Zbl
, ,[13] Functionnal Analysis, McGraw-Hill, New York, 1973. | MR | Zbl
,[14] Existence of solutions for the Boussinesq system of equations, J. Differential Equations, 42, 1981, no. 3, 325-352. | MR | Zbl | DOI
,[15] Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New-York-London-Sydney 1974. | MR | Zbl
,[1] Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland Publishing Company, 1973 | MR | Zbl
.[2] Contrôle optimal des équations aux dérivées partielles, Ecole Polytechnique, Palaiseau, France. 2003
, .[3] Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math., 13, 1960, 427-455 | MR | Zbl | DOI
, .[4] Problèmes aux limites non homogènes et applications, Dunod, 1968 | Zbl
,[5] A step toward transparent boundary conditions for meteorological models. Monthly Weather Review, 130 : 140-151, 2001. | DOI
.[6] Transparent boundary conditions for the shallow-water equations : testing in a nested environment. Monthly Weather Review, 131 : 698-705, 2002. | DOI
.[7] Semigroups of operators in Banach spaces. In Equadiff 82 (Würzburg, 1982), volume 1017 of Lecture Notes in Math., pages 508-524. Springer, Berlin, 1983. | MR | Zbl
.[8] Geophysical Fluid Dynamics, Springer, second edition, 1987. | Zbl
.[9] Functionnal Analysis, International series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, second ed., 1991. | MR | Zbl
.[10] Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reedition of the 1984 edition. | MR | Zbl
.[11] Functionnal Analysis, Springer-Verlag, reprint of the sisth edition, 1995 | MR
.[1] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows SIAM J. Sci. Comput. 25, 2004. | MR | Zbl | DOI
, , , , ,[2] Kinetic schemes for Saint-Venant equations sith source terms on unstructured grids INRIA Report RR-3989, 2000.
, , , ,[3] Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization Appl. Numer. Math. 23 (4), 1997. | MR | Zbl | DOI
, , ,[4] Incremental unknowns method and compact schemes RAIRO Model. Math. Anal. Num. 32 (1), 1998. | MR | Zbl | Numdam
,[5] Incremental unknowns for solving partial differential equations Numer. Math. 59, 1991. | MR | Zbl | DOI
, ,[6] Incremental unknowns in finite differences : condition number of the matrix SIAM J. Matrix Anal. Appl. 14 (2), 1993. | MR | Zbl | DOI
, ,[7] A dynamical multi-level scheme for the Burgers equation : wavelet and hierarchical finite element J. Sci. Comput. 25 (3), 2005. | MR | Zbl | DOI
, , ,[8] Dynamic multilevel methods and the numerical simulation of turbulence Cambridge University Press, Cambridge, 1999. | MR | Zbl
, , ,[9] Incremental unknowns, multilevel methods and the numerical simulation of turbulence Comput. Methods Appl. Mech. Engrg. 159 (1-2), 1998. | MR | Zbl
, , ,[10] Multilevel schemes for the shallow water equations J. Comput. Phys. 207, 2005. | MR | Zbl | DOI
, , , ,[11] Finite volume methods in Handbook of numerical analysis VII, p. 713-1020, North Holland, Amsterdam, 2000. | MR | Zbl
, , ,[12] Finite volume discretization and multilevel methods in flow problems, J. Sci. Comput., 25 (1-2), 2005. | MR | Zbl | DOI
, , ,[13] Méthodes de volumes finis et multiniveaux pour les équations de Navier-Stokes, de Burgers et de la chaleur, Thèse de Doctorat.
,[14] Some approximate Godunov schemes to compute shallow-water equations with topography Comput. Fluids 32 (4), 2003. | MR | Zbl | DOI
, , ,[15] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160, 2000. | MR | Zbl
, ,[16] A third-order semi-discrete genuinely multidimensionnal central scheme for hyperbolic conservation laws and related problems Numer. Math. 88, 2001. | MR | Zbl | DOI
, ,[17] Semidiscrete central upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23, no3, 2001. | MR | Zbl | DOI
, , ,[18] Central-upwind schemes for the Saint-Venant system, M2AN, Vol. 36, no 3, 2002. | MR | Zbl | Numdam | DOI
, ,[19] Inertial manifolds and multigrid methods SIAM J. Math. Anal., 21 (1), 1990. | MR | Zbl | DOI
,[20] Multilevel methods for the simulation of turbulence. A simple model J. Comput. Phys., 127 (2), 1996. | MR | Zbl | DOI
,